ﻻ يوجد ملخص باللغة العربية
Let $G$ be a non--linear function of a Gaussian process ${X_t}_{tinmathbb{Z}}$ with long--range dependence. The resulting process ${G(X_t)}_{tinmathbb{Z}}$ is not Gaussian when $G$ is not linear. We consider random wavelet coefficients associated with ${G(X_t)}_{tinmathbb{Z}}$ and the corresponding wavelet scalogram which is the average of squares of wavelet coefficients over locations. We obtain the asymptotic behavior of the scalogram as the number of observations and scales tend to infinity. It is known that when $G$ is a Hermite polynomial of any order, then the limit is either the Gaussian or the Rosenblatt distribution, that is, the limit can be represented by a multiple Wiener-It^o integral of order one or two. We show, however, that there are large classes of functions $G$ which yield a higher order Hermite distribution, that is, the limit can be represented by a a multiple Wiener-It^o integral of order greater than two.
A time-changed mixed fractional Brownian motion is an iterated process constructed as the superposition of mixed fractional Brownian motion and other process. In this paper we consider mixed fractional Brownian motion of parameters a, b and Hin(0, 1)
Marcinkiewicz strong law of large numbers, ${n^{-frac1p}}sum_{k=1}^{n} (d_{k}- d)rightarrow 0 $ almost surely with $pin(1,2)$, are developed for products $d_k=prod_{r=1}^s x_k^{(r)}$, where the $x_k^{(r)} = sum_{l=-infty}^{infty}c_{k-l}^{(r)}xi_l^{(r
For extreme value copulas with a known upper tail dependence coefficient we find pointwise upper and lower bounds, which are used to establish upper and lower bounds of the Spearman and Kendall correlation coefficients. We shown that in all cases the
We consider the problem of recovering a $k$-sparse signal ${mbox{$beta$}}_0inmathbb{R}^p$ from noisy observations $bf y={bf X}mbox{$beta$}_0+{bf w}inmathbb{R}^n$. One of the most popular approaches is the $l_1$-regularized least squares, also known a
In this paper, we present a new Marshall-Olkin exponential shock model. The new construction method gives the proposed model further ability to allocate the common joint shock on each of the components, making it suitable for application in fields li