ﻻ يوجد ملخص باللغة العربية
Kaonic hydrogen atoms provide a unique laboratory to probe the kaon-nucleon strong interaction at the energy threshold, allowing an investigation of the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. The SIDDHARTA Collaboration has measured the $K$-series X rays of kaonic hydrogen atoms at the DA$Phi$NE electron-positron collider of Laboratori Nazionali di Frascati, and has determined the most precise values of the strong-interaction induced shift and width of the $1s$ atomic energy level. This result provides vital constraints on the theoretical description of the low-energy $bar{K}N$ interaction.
The strong-interaction shift of kaonic 3He and 4He 2p states was measured using gaseous targets for the first time in the SIDDHARTA experiment. The determined shift of kaonic 4He is much smaller than the values obtained in the experiments performed i
The $bar{K}N$ system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the $K$-series x rays of kaonic hydrogen atoms at the DA$Phi$NE electron-positron co
We measured the $K$-series X-rays of the $K^{-}p$ exotic atom in the SIDDHARTA experiment with a gaseous hydrogen target of 1.3 g/l, which is about 15 times the $rho_{rm STP}$ of hydrogen gas. At this density, the absolute yields of kaonic X-rays, wh
The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms, in which one electron is replaced
The study of the KbarN system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAFNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaon