ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-Energy Effects on the Low- to High-Energy Electronic Structure of SrVO3

291   0   0.0 ( 0 )
 نشر من قبل Teppei Yoshida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correlated electronic structure of SrVO3 has been investigated by angle-resolved photoemission spectroscopy using in-situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ~60 meV below the Fermi level (EF) and a broad so-called high-energy kink ~0.3 eV below EF as in the high-Tc cuprates although SrVO3 does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ~0.7 eV which is attributed to electron-electron interaction and gives rise to the ~0.3 eV kink in the band dispersion as well as the incoherent peak ~1.5eV below EF. The present analysis enables us to obtain consistent picture both for the incoherent spectra and the band renormalization.



قيم البحث

اقرأ أيضاً

The parquet decomposition of the self-energy into classes of diagrams, those associated with specific scattering processes, can be exploited for different scopes. In this work, the parquet decomposition is used to unravel the underlying physics of no n-perturbative numerical calculations. We show the specific example of dynamical mean field theory (DMFT) and its cluster extensions (DCA) applied to the Hubbard model at half-filling and with hole doping: These techniques allow for a simultaneous determination of two-particle vertex functions and self-energies, and hence, for an essentially exact parquet decomposition at the single-site or at the cluster level. Our calculations show that the self-energies in the underdoped regime are dominated by spin scattering processes, consistent with the conclusions obtained by means of the fluctuation diagnostics approach [Phys. Rev. Lett. 114, 236402 (2015)]. However, differently from the latter approach, the parquet procedure displays important changes with increasing interaction: Even for relatively moderate couplings, well before the Mott transition, singularities appear in different terms, with the notable exception of the predominant spin-channel. We explain precisely how these singularities, which partly limit the utility of the parquet decomposition, and - more generally - of parquet-based algorithms, are never found in the fluctuation diagnostics procedure. Finally, by a more refined analysis, we link the occurrence of the parquet singularities in our calculations to a progressive suppression of charge fluctuations and the formation of an RVB state, which are typical hallmarks of a pseudogap state in DCA.
We propose a systematic procedure for constructing effective models of strongly correlated materials. The parameters, in particular the on-site screened Coulomb interaction U, are calculated from first principles, using the GW approximation. We deriv e an expression for the frequency-dependent U and show that its high frequency part has significant influence on the spectral functions. We propose a scheme for taking into account the energy dependence of U, so that a model with an energy-independent local interaction can still be used for low-energy properties.
We present cluster-DMFT (CTQMC) calculations based on a downfolded tight-binding model in order to study the electronic structure of vanadium dioxide (VO_2) both in the low-temperature (M_1) and high-temperature (rutile) phases. Motivated by the rece nt efforts directed towards tuning the physical properties of VO_2 by depositing films on different supporting surfaces of different orientations we performed calculations for different geometries for both phases. In order to investigate the effects of the different growing geometries we applied both contraction and expansion for the lattice parameter along the rutile c-axis in the 3-dimensional translationally invariant systems miming the real situation. Our main focus is to identify the mechanisms governing the formation of the gap characterizing the M_1 phase and its dependence on strain. We found that the increase of the band-width with compression along the axis corresponding to the rutile c-axis is more important than the Peierls bonding-antibonding splitting.
Using LDA+GTB multi-band approach, we studied the compression dependence of the electronic structure and in-plane superexchange interaction J(P) in the antiferromagnetic La214 at the 0% and 3% - hydrostatic and unaxial (along c axial) compression. We obtained the superexchange interaction J(P=0)~0.15eV is enhanced by ~20% under the 3% - hydrostatic compression and vice versa the J(P) is decreased slightly by ~5,7% under the 3% - uniaxial compression. In both cases the J(P) correlates with the in-plane hopping parameters and dd-excitation energy delta_s=e(^3B_{1})-e(A_{1})$ involving the the two-hole states: Zhang-Rice singlet and ^3{B_{1}} triplet states. The spectral density of the first removal states is a combined singlet-triplet character and a sign of changes in the one with the pressure clearly reproduces the vec{k}-distribution of quasiparticle states with a different a_1- and b_1-symmetry over the Brillouin zone as a whole.
The emergence of flat bands in twisted bilayer graphene leads to an enhancement of interaction effects, and thus to insulating and superconducting phases at low temperatures, even though the exact mechanism is still widely debated. The position and s plitting of the flat bands is also very sensitive to the residual interactions. Moreover, the low energy bands of twisted graphene bilayers show a rich structure of singularities in the density of states, van Hove singularities, which can enhance further the role of interactions. We study the effect of the long-range interactions on the band structure and the van Hove singularities of the low energy bands of twisted graphene bilayers. Reasonable values of the long-range electrostatic interaction lead to a band dispersion with a significant dependence on the filling. The change of the shape and position of the bands with electronic filling implies that the van Hove singularities remain close to the Fermi energy for a broad range of fillings. This result can be described as an effective pinning of the Fermi energy at the singularity. The sensitivity of the band structure to screening by the environment may open new ways of manipulating the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا