ﻻ يوجد ملخص باللغة العربية
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At partial filling, exchange interactions can spontaneously break this symmetry, manifesting as additional integer quantum Hall plateaus outside the normal sequence. Here we report the observation of a large number of these quantum Hall isospin ferromagnetic (QHIFM) states, which we classify according to their real spin structure using temperature-dependent tilted field magnetotransport. The large measured activation gaps confirm the Coulomb origin of the broken symmetry states, but the order is strongly dependent on LL index. In the high energy LLs, the Zeeman effect is the dominant aligning field, leading to real spin ferromagnets with Skyrmionic excitations at half filling, whereas in the `relativistic zero energy LL, lattice scale anisotropies drive the system to a spin unpolarized state, likely a charge- or spin-density wave.
We have measured the magneto-resistance of freely suspended high-mobility bilayer graphene. For magnetic fields $B>1$ T we observe the opening of a field induced gap at the charge neutrality point characterized by a diverging resistance. For higher f
Graphene is a very promising test-bed for the field of electron quantum optics. However, a fully tunable and coherent electronic beam splitter is still missing. We report the demonstration of electronic beam splitters in graphene that couple quantum
Electron spin and pseudospin degrees of freedom play a critical role in many-body phenomena through exchange interactions, the understanding and control of which enable the construction of states with complex topological orders and exotic excitations
Self-similarity and fractals have fascinated researchers across various disciplines. In graphene placed on boron nitride and subjected to a magnetic field, self-similarity appears in the form of numerous replicas of the original Dirac spectrum, and t
Using transport measurements, we investigate multicomponent quantum Hall (QH) ferromagnetism in dual-gated rhombohedral trilayer graphene (r-TLG), in which the real spin, orbital pseudospin and layer pseudospins of the lowest Landau level form sponta