ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-Temperature Charge Stability Modulated by Quantum Effects in a Nanoscale Silicon Island

157   0   0.0 ( 0 )
 نشر من قبل Jung-Bum Choi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on transport measurement performed on a room-temperature-operating ultra-small Coulomb blockade devices with a silicon island of sub-5nm. The charge stability at 300K exhibits a substantial change in slopes and diagonal size of each successive Coulomb diamond, but remarkably its main feature persists even at low temperature down to 5.3K except for additional Coulomb peak splitting. This key feature of charge stability with additional fine structures of Coulomb peaks are successfully modeled by including the interplay between Coulomb interaction, valley splitting, and strong quantum confinement, which leads to several low-energy many-body excited states for each dot occupancy. These excited states become enhanced in the sub-5nm ultra-small scale and persist even at 300K in the form of cluster, leading to the substantial modulation of charge stability.



قيم البحث

اقرأ أيضاً

We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $ pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicons indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs.
84 - F. G. Eich , M. Di Ventra , 2016
We analyze the short-time behavior of the heat and charge currents through nanoscale conductors exposed to a temperature gradient. To this end, we employ Luttingers thermomechanical potential to simulate a sudden change of temperature at one end of t he conductor. We find that the direction of the charge current through an impurity is initially opposite to the direction of the charge current in the steady-state limit. Furthermore, we investigate the transient propagation of energy and particle density driven by a temperature variation through a conducting nanowire. Interestingly, we find that the velocity of the wavefronts of, both, the particle and the energy wave have the same constant value, insensitive to changes in the average electronic density. In the steady-state regime, we find that, at low temperatures, the local temperature and potential, as measured by a floating probe lead, exhibit characteristic oscillations due to quantum interference, with a periodicity that corresponds to half the Fermi wavelength of the electrons.
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp in-photon interface. Silicon carbide (SiC) combines the strength of both systems: It has a large bandgap with deep defects and benefits from mature fabrication techniques. Here we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence time under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable el ectromigration process and the individual silicon quantum dot in the junction is determined to be a Si_170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10 meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the lande factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا