ترغب بنشر مسار تعليمي؟ اضغط هنا

PHL 1811 Analogs: A Population of X-ray Weak Quasars

335   0   0.0 ( 0 )
 نشر من قبل Jianfeng Wu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a population of X-ray weak quasars with similar UV emission-line properties to those of the remarkable quasar PHL 1811. All radio-quiet PHL 1811 analogs are notably X-ray weak by a mean factor of ~13, with hints of heavy X-ray absorption. Correlations between the X-ray weakness and UV emission-line properties suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions (BELRs). We propose an AGN geometry that can potentially unify the PHL 1811 analogs and the general population of weak-line quasars.



قيم البحث

اقرأ أيضاً

(Abridged) We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z=0.4-2.5. The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. The X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811; they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization shielding gas covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. However, one source in our X-ray observed sample is remarkably strong in X-rays, indicating that a small fraction of low-redshift WLQ candidates may actually be BL Lacs residing in the radio-faint tail of the BL Lac population. We also investigate universal selection criteria for WLQs over a wide range of redshift, finding that it is not possible to select WLQ candidates in a fully consistent way using different prominent emission lines as a function of redshift.
This is the second of two papers reporting observations and analysis of the unusually bright (m_b=14.4), luminous (M_B=-25.5), nearby (z=0.192) narrow-line quasar PHL 1811. The first paper reported that PHL 1811 is intrinsically X-ray weak, and prese nted a spectral energy distribution (SED). Here we present HST STIS optical and UV spectra, and ground-based optical spectra. The optical and UV line emission is very unusual. There is no evidence for forbidden or semiforbidden lines. The near-UV spectrum is dominated by very strong FeII and FeIII, and unusual low-ionization lines such as NaID and CaII H&K are observed. High-ionization lines are very weak; CIV has an equivalent width of 6.6A, a factor of ~5 smaller than measured from quasar composite spectra. An unusual feature near 1200A can be deblended in terms of Lyalpha, NV, SiII, and CIII* using the blueshifted CIV profile as a template. Photoionization modeling shows that the unusual line emission can be explained qualitatively by the unusually soft SED. Principally, a low gas temperature results in inefficient emission of collisionally excited lines, including the semiforbidden lines generally used as density diagnostics. The emission resembles that of high-density gas; in both cases this is a consequence of inefficient cooling. PHL 1811 is very unusual, but we note that quasar surveys are generally biased against finding similar objects.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi ties are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
We investigate a suspected very massive star in one of the most metal-poor dwarf galaxies, PHL~293B. Excitingly, we find the sudden disappearance of the stellar signatures from our 2019 spectra, in particular the broad H lines with P~Cygni profiles t hat have been associated with a massive luminous blue variable (LBV) star. Such features are absent from our spectra obtained in 2019 with the ESPRESSO and X-shooter instruments of the ESOs VLT. We compute radiative transfer models using CMFGEN that fit the observed spectrum of the LBV and are consistent with ground-based and archival Hubble Space Telescope photometry. Our models show that during 2001--2011 the LBV had a luminosity $L_* = 2.5-3.5 times 10^6 ~L_{odot}$, a mass-loss rate $dot{M} = 0.005-0.020 ~M_{odot}$~yr$^{-1}$, a wind velocity of 1000~km~s$^{-1}$, and effective and stellar temperatures of $T_mathrm{eff} = 6000-6800$~K and $T_mathrm{*}=9500-15000$~K. These stellar properties indicate an eruptive state. We consider two main hypotheses for the absence of the broad emission components from the spectra obtained since 2011. One possibility is that we are seeing the end of an LBV eruption of a surviving star, with a mild drop in luminosity, a shift to hotter effective temperatures, and some dust obscuration. Alternatively, the LBV could have collapsed to a massive black hole without the production of a bright supernova.
Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا