ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong single-ion anisotropy and anisotropic interactions of magnetic adatoms induced by topological surface states

114   0   0.0 ( 0 )
 نشر من قبل Zhenglu Li
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the magnetism brought about by Fe adatoms on the surface of the topological insulator Bi2Se3 was examined in terms of density functional calculations. The Fe adatoms exhibit strong easy-axis magnetic anisotropy in the dilute adsorption limit due to the topological surface states (TSS). The spin exchange J between the Fe adatoms follows a Ruderman-Kittel-Kasuya-Yosida (RKKY) behavior with substantial anisotropy, and the Dzyaloshinskii-Moriya (DM) interaction between them is quite strong with |D/J|~0.3 under the mediation by the TSS, and can be further raised to ~0.6 by an external electric field. The apparent single-ion anisotropy of a Fe adatom is indispensable in determining the spin orientation.



قيم البحث

اقرأ أيضاً

The tunnelling anisotropic magnetoresistance (TAMR) effect describes the sensitivity of spin-polarized electron transport to the orientation of the magnetization with respect to the crystallographic axes. As the TAMR effect requires only a single mag netic electrode, in contrast to the tunnelling magnetoresistance effect, it offers an attractive route towards alternative spintronics applications. In this work we consider the TAMR effect at the single-atom limit by investigating the anisotropy of the local density of states in the vacuum above transition-metal adatoms adsorbed on a noncollinear magnetic surface, the monolayer of Mn on W(110). This surface presents a cycloidal spin spiral ground state with an angle of 173$^circ$ between neighbouring spins and thus allows a quasi-continuous exploration of the angular dependence of the TAMR of adsorbed adatoms using scanning tunnelling microscopy. Using first-principles calculations, we investigate the TAMR of Co, Rh and Ir adatoms on Mn/W(110) and relate our results to magnetization direction dependent changes in the local density of states. The anisotropic effect is found to be enhanced dramatically on the adsorption of heavy transition-metal atoms, with values of up to 50% predicted from our calculations. This effect will be measurable even with a non-magnetic STM tip.
First-principles calculations of the magnetic anisotropy energy for Mn- and Fe-atoms on CuN/Cu(001) surface are performed making use of the torque method. The easy magnetization direction is found to be different for Mn and Fe atoms in accord with th e experiment. It is shown the magnetic anisotropy has a single-ion character and mainly originates from the local magnetic moment of Mn- and Fe-atoms. The uniaxial magnetic anisotropy constants are calculated in reasonable agreement with the experiment.
Single-ion lanthanide-organic complexes can provide stable magnetic moments with well-defined orientation for spintronic applications on the atomic level. Here, we show by a combined experimental approach of scanning tunneling microscopy and X-ray ab sorption spectroscopy that dysprosium-tris(1,1,1-trifluoro-4-(2-thienyl)-2,4butanedionate) (Dy(tta)$_3$) complexes deposited on a Au(111) surface undergo a molecular distortion, resulting in distinct crystal field symmetry imposed on the Dy ion. This leads to an easy-axis magnetization direction in the ligand plane. Furthermore, we show that tunneling electrons hardly couple to the spin excitations, which we ascribe to the shielded nature of the $4f$ electrons.
Electrons with a linear energy/momentum dispersion are called massless Dirac electrons and represent the low-energy excitations in exotic materials like Graphene and Topological Insulators (TIs). Dirac electrons are characterized by notable propertie s like a high mobility, a tunable density and, in TIs, a protection against backscattering through the spin-momentum looking mechanism. All those properties make Graphene and TIs appealling for plasmonics applications. However, Dirac electrons are expected to present also a strong nonlinear optical behavior. This should mirror in phenomena like electromagnetic induced transparency (EIT) and harmonic generation. Here, we demonstrate that in Bi2Se3 Topological Insulator, an EIT is achieved under the application of a strong terahertz (THz) electric field. This effect, concomitant determined by harmonic generation and charge-mobility reduction, is exclusively related to the presence of Dirac electron at the surface of Bi2Se_3, and opens the road towards tunable THz nonlinear optical devices based on Topological Insulator materials.
118 - Danila Amoroso , Paolo Barone , 2021
The effects of competing magnetic interactions in stabilizing different spin configurations are drawing a renewed attention in order to both unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilizat ion. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work we explore the phase diagram of a frustrated localized magnet on a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy (TIA) and the single-ion anisotropy (SIA). The effects of an external magnetic field applied perpendicularly to the magnetic layer are also investigated. By means of Monte Carlo simulations, we find a profusion of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture, whereas the strength and sign of SIA, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin-texture. Our analysis confirms the crucial role of anisotropic symmetric exchange in systems with dominant short-range interactions, at the same time predicting a rich variety of complex magnetic textures that may arise from a fine tuning of competing anisotropic mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا