ﻻ يوجد ملخص باللغة العربية
The problem of spontaneous radiation of the electron bunch grazing into a charged metallic surface with randomly distributed needle shaped asperities is considered. Distances between two neighboring asperities have been described by gamma distribution. Being repealed by highly charged asperities the electrons of the bunch move along non-regular periodical trajectories in the planes parallel to the metallic surface. The spatial periods of the trajectories are random quantities which are described by the same gamma distribution. The radiation characteristics of the bunch have been obtained. It is shown that the angular distributions of the number of photons radiated from the bunch and from a single electron are the same but the frequency distribution of the bunch is being drastically changed at the hard frequency region. It is proposed to develop a new non-destructive method for investigation of the metal surface roughness. The frequency distribution of the number of photons radiated under the zero angle has been obtained. That allows to find the gain expression of the stimulated radiation.
As a consequence of motions driven by external forces, self-fields (which are different from the static case) originate within an electron bunch. In the case of magnetic external forces acting on an ultrarelativistic beam, the longitudinal self-inter
We discuss radiation reaction effects on charges propagating in ultra-intense laser fields. Our analysis is based on an analytic solution of the Landau-Lifshitz equation. We suggest to measure radiation reaction in terms of a symmetry breaking parame
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase
Retarded electromagnetic potentials are derived from Maxwells equations and the Lorenz condition. The difference found between these potentials and the conventional Li{e}nard-Wiechert ones is explained by neglect, for the latter, of the motion-depend
Radiation generated by the passage of a monoenergetic electron bunch above the surface wave excited in plane interface between homogeneous media with different dielectric constants is investigated. For the surface wave of general profile the radiatio