ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests with a Carlina-type diluted telescope; Primary coherencing

147   0   0.0 ( 0 )
 نشر من قبل Herv\\'e Le Coroller
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies are under way to propose a new generation of post-VLTI interferometers. The Carlina concept studied at the Haute- Provence Observatory is one of the proposed solutions. It consists in an optical interferometer configured like a diluted version of the Arecibo radio telescope: above the diluted primary mirror made of fixed cospherical segments, a helium balloon (or cables suspended between two mountains), carries a gondola containing the focal optics. Since 2003, we have been building a technical demonstrator of this diluted telescope. First fringes were obtained in May 2004 with two closely-spaced primary segments and a CCD on the focal gondola. We have been testing the whole optical train with three primary mirrors. The main aim of this article is to describe the metrology that we have conceived, and tested under the helium balloon to align the primary mirrors separate by 5-10 m on the ground with an accuracy of a few microns. The servo loop stabilizes the mirror of metrology under the helium balloon with an accuracy better than 5 mm while it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have obtained the white fringes of metrology; i.e., the three mirrors are aligned (cospherized) with an accuracy of {approx} 1 micron. We show data proving the stability of fringes over 15 minutes, therefore providing evidence that the mechanical parts are stabilized within a few microns. This is an important step that demonstrates the feasibility of building a diluted telescope using cables strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could be one of the first members of a new class of telescopes named diluted telescopes.



قيم البحث

اقرأ أيضاً

142 - Tristan Guillot 2015
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of elec tronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctua- tions on the optical paths. ASTEP 400 is a 40 cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0.1 and 5 arcsec) and to temperature fluctuations between --30 degrees C and --80 degrees C. We analyze both day-time and night-time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0.23 arcsec K--1 . We propose solutions to mitigate these effects.
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use extreme adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
We propose a suite of telescopes be deployed as part of the Artemis III human-crewed expedition to the lunar south pole, able to collect wide-field simultaneous far-ultraviolet (UV), near-UV, and optical band images with a fast cadence (10 seconds) o f a single part of the sky for several hours continuously. Wide-field, high-cadence monitoring in the optical regime has provided new scientific breakthroughs in the fields of exoplanets, stellar astrophysics, and astronomical transients. Similar observations cannot be made in the UV from within Earths atmosphere, but are possible from the Moons surface. The proposed observations will enable studies of atmospheric escape from close-in giant exoplanets, exoplanet magnetospheres, the physics of stellar flare formation, the impact of stellar flares on exoplanet habitability, the internal stellar structure of hot, compact stars, and the early-time evolution of supernovae and novae to better understand their progenitors and formation mechanisms.
The Arecibo Observatory (AO) is a multidisciplinary research and education facility that is recognized worldwide as a leading facility in astronomy, planetary, and atmospheric and space sciences. AOs cornerstone research instrument was the 305-m Will iam E. Gordon telescope. On December 1, 2020, the 305-m telescope collapsed and was irreparably damaged. In the three weeks following the collapse, AOs scientific and engineering staff and the AO users community initiated extensive discussions on the future of the observatory. The community is in overwhelming agreement that there is a need to build an enhanced, next-generation radar-radio telescope at the AO site. From these discussions, we established the set of science requirements the new facility should enable. These requirements can be summarized briefly as: 5 MW of continuous wave transmitter power at 2 - 6 GHz, 10 MW of peak transmitter power at 430 MHz (also at 220MHz under consideration), zenith angle coverage 0 to 48 deg, frequency coverage 0.2 to 30 GHz and increased Field-of-View. These requirements determine the unique specifications of the proposed new instrument. The telescope design concept we suggest consists of a compact array of fixed dishes on a tiltable, plate-like structure with a collecting area equivalent to a 300m dish. This concept, referred to as the Next Generation Arecibo Telescope (NGAT), meets all of the desired specifications and provides significant new science capabilities to all three research groups at AO. This whitepaper presents a sample of the wide variety of the science that can be achieved with the NGAT, the details of the telescope design concept and the need for the new telescope to be located at the AO site. We also discuss other AO science activities that interlock with the NGAT in the white paper.
The HARPS/HARPS-N Data Reduction Software (DRS) relies on the cross-correlation between the observed spectra and a suitable stellar mask to compute a cross-correlation function (CCF) to be used both for the radial velocity (RV) computation and as an indicator of stellar lines asymmetry, induced for example by the stellar activity. Unfortunately the M2 mask currently used by the HARPS/HARPS-N DRS for M-type stars results in heavily distorted CCFs. We created several new stellar masks in order to decrease the errors in the RVs and to improve the reliability of the activity indicators as the bisectors span. We obtained very good results with a stellar mask created from the theoretical line list provided by the VALD3 database for an early M-type star (T$_{mathrm{eff}}$=3500~K and $log{g}=4.5$). The CCFs shape and relative activity indicators improved and the RV time-series allowed us to recover known exoplanets with periods and amplitudes compatible with the results obtained with HARPS-TERRA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا