ﻻ يوجد ملخص باللغة العربية
We measured the temperature dependence of the in-plane polarized reflectivity spectra of twin-free Y$_{1-x}$Ca$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-{delta}}$ single crystals with different Ca-concentrations (x=0,0.11 and 0.16) from optimally doped to heavily overdoped region. Low energy optical conductivity spectra showed a Drude-like residual conductivity at temperatures far below the superconducting transition temperature, which indicates the presence of unpaired-normal carriers in the superconducting state. Comparing the spectra at a fixed Ca-content or at a fixed doping level, we have revealed that the carrier overdoping increases unpaired carriers in addition to those induced by the Ca-disorder. We also found the superconducting behavior of the one-dimensional CuO chains for the Ca-free samples.
The intragrain pinning in high-$T_c$ superconductor compounds Y$_{1-x}$RE$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ with low concentration of RE (La, Ce, Pr) was investigated. Magnetic and transport measurements reveal that the pinning is maximal for the co
Pulsed NQR at the frequencies of 28-33 MHz has been used to study copper NQR spectra in YBa{2}Cu{3}O{7}, TmBa{2}Cu{3}O{7} and Y{0.9}Pr{0.1}Ba{2}Cu{3}O{7} compounds at temperatures of 4.2-200K. Quantitative analysis of the spectra has shown that the p
Scanning tunneling spectroscopy was performed on c-axis Y{1-x}Ca{x}Ba2Cu3O{7-delta} thin films for x= 0, 0.05, 0.15 and 0.20 at 4.2K. The measured spectra show main-gap, sub-gap and satellite features which scale similarly in energy versus Ca-doping,
We demonstrate that the spin dynamics in underdoped Y(1-z)Ca(z)Ba(2)Cu(3)O(y) for y=~6.0 exhibit qualitatively the same behavior to underdoped La(2-x)Sr(x)CuO(4) for an equal amount of hole concentration p=z/2=x<0.11. However,a spin-gap appears as mo
We report on theoretical calculations of the optical conductivity of Ba [Fe(1-x)Co(x)]2 As2, as obtained from density functional theory within the full potential LAPW method. A thorough comparison with experiment shows that we are able to reproduce m