ترغب بنشر مسار تعليمي؟ اضغط هنا

Lensing and X-ray mass estimates of clusters (SIMULATION)

148   0   0.0 ( 0 )
 نشر من قبل Elena Rasia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] We present a comparison between weak-lensing (WL) and X-ray mass estimates of a sample of numerically simulated clusters. The sample consists on the 20 most massive objects at redshift z=0.25 and Mvir > 5 x 10^{14} Msun h^{-1}. They were found in a cosmological simulation of volume 1 h^{-3} Gpc^3, evolved in the framework of a WMAP-7 normalized cosmology. Each cluster has been resimulated at higher resolution and with more complex gas physics. We processed it thought Skylens and X-MAS to generate optical and X-ray mock observations along three orthogonal projections. The optical simulations include lensing effects on background sources. Standard observational tools and methods of analysis are used to recover the mass profiles of each cluster projection from the mock catalogues. Given the size of our sample, we could also investigate the dependence of the results on cluster morphology, environment, temperature inhomogeneity, and mass. We confirm previous results showing that WL masses obtained from the fit of the cluster tangential shear profiles with NFW functionals are biased low by ~ 5-10% with a large scatter (~10-25%). We show that scatter could be reduced by optimally selecting clusters either having regular morphology or living in substructure-poor environment. The X-ray masses are biased low by a large amount (~25-35%), evidencing the presence of both non-thermal sources of pressure in the ICM and temperature inhomogeneity, but they show a significantly lower scatter than weak-lensing-derived masses. The X-ray mass bias grows from the inner to the outer regions of the clusters. We find that both biases are weakly correlated with the third-order power ratio, while a stronger correlation exists with the centroid shift. Finally, the X-ray bias is strongly connected with temperature inhomogeneities.



قيم البحث

اقرأ أيضاً

Determination of cluster masses is a fundamental tool for cosmology. Comparing mass estimates obtained by different probes allows to understand possible systematic uncertainties. The cluster Abell 315 is an interesting test case, since it has been cl aimed to be underluminous in X-ray for its mass (determined via kinematics and weak lensing). We have undertaken new spectroscopic observations with the aim of improving the cluster mass estimate, using the distribution of galaxies in projected phase space. We identified cluster members in our new spectroscopic sample. We estimated the cluster mass from the projected phase-space distribution of cluster members using the MAMPOSSt method. In doing this estimate we took into account the presence of substructures that we were able to identify. We identify several cluster substructures. The main two have an overlapping spatial distribution, suggesting a (past or ongoing) collision along the line-of-sight. After accounting for the presence of substructures, the mass estimate of Abell 315 from kinematics is reduced by a factor 4, down to M200=0.8 (-0.4,+0.6) x 10^14 Msun. We also find evidence that the cluster mass concentration is unusually low, c200=r200/r-2 <~ 1. Using our new estimate of c200 we revise the weak lensing mass estimate down to M200=1.8 (-0.9,+1.7) x 10^14 Msun. Our new mass estimates are in agreement with that derived from the cluster X-ray luminosity via a scaling relation, M200=0.9+-0.2 x 10^14 Msun. Abell 315 no longer belongs to the class of X-ray underluminous clusters. Its mass estimate was inflated by the presence of an undetected subcluster in collision with the main cluster. Whether the presence of undetected line-of-sight structures can be a general explanation for all X-ray underluminous clusters remains to be explored using a statistically significant sample.
We present profiles of temperature (Tx), gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravi tational lensing mass profiles derived with CLASH HST and ground-based lensing data. Radial profiles of Chandra and XMM electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in Tx measurements. Encouragingly, cluster Txs are consistent with one another at ~100-200 kpc radii but XMM Tx systematically decline relative to Chandra Tx at larger radii. The angular dependence of the discrepancy suggests additional investigation on systematics such as the XMM point spread function correction, vignetting and off-axis responses. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. Ratios of Chandra HSE mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the WL and SaWLens data are different. e.g., the weighted-mean value at 0.5 Mpc is <b> = 0.12 for the WL comparison and <b> = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias of value rising to <b>~0.3 at ~1 Mpc for the WL comparison and <b> of 0.25 for SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value 1/8 times the total-mass profiles inferred from lensing at 0.5 Mpc and remain constant outside of that radius, suggesting that [8xMgas] profiles may be an excellent proxy for total-mass profiles at >0.5 Mpc in massive galaxy clusters.
We aim at investigating potential biases in lensing and X-ray methods to measure the cluster mass profiles. We do so by performing realistic simulations of lensing and X-ray observations that are subsequently analyzed using observational techniques. The resulting mass estimates are compared among them and with the input models. Three clusters obtained from state-of-the-art hydrodynamical simulations, each of which has been projected along three independent lines-of-sight, are used for this analysis. We find that strong lensing models can be trusted over a limited region around the cluster core. Extrapolating the strong lensing mass models to outside the Einstein ring can lead to significant biases in the mass estimates, if the BCG is not modeled properly for example. Weak lensing mass measurements can be largely affected by substructures, depending on the method implemented to convert the shear into a mass estimate. Using non-parametric methods which combine weak and strong lensing data, the projected masses within R200 can be constrained with a precision of ~10%. De-projection of lensing masses increases the scatter around the true masses by more than a factor of two due to cluster triaxiality. X-ray mass measurements have much smaller scatter (about a factor of two smaller than the lensing masses) but they are generally biased low by 5-20%. This bias is ascribable to bulk motions in the gas of our simulated clusters. Using the lensing and the X-ray masses as proxies for the true and the hydrostatic equilibrium masses of the simulated clusters and averaging over the cluster sample we are able to measure the lack of hydrostatic equilibrium in the systems we have investigated.
The core mass of galaxy clusters is an important probe of structure formation. Here, we evaluate the use of a Single-Halo model (SHM) as an efficient method to estimate the strong lensing cluster core mass, testing it with ray-traced images from the `Outer Rim simulation. Unlike detailed lens models, the SHM represents the cluster mass distribution with a single halo and can be automatically generated from the measured lensing constraints. We find that the projected core mass estimated with this method, M$_{rm SHM}$, has a scatter of $8.52%$ and a bias of $0.90%$ compared to the true mass within the same aperture. Our analysis shows no systematic correlation between the scatter or bias and the lens-source system properties. The bias and scatter can be reduced to $3.26%$ and $0.34%$, respectively, by excluding models that fail a visual inspection test. We find that the SHM success depends on the lensing geometry, with single giant arc configurations accounting for most of the failed cases due to their limiting constraining power. When excluding such cases, we measure a scatter and bias of $3.88%$ and $0.84%$, respectively. Finally, we find that when the source redshift is unknown, the model-predicted redshifts are overestimated, and the M$_{rm SHM}$ is underestimated by a few percent, highlighting the importance of securing spectroscopic redshifts of background sources. Our analysis provides a quantitative characterization of M$_{rm SHM}$, enabling its efficient use as a tool to estimate the strong lensing cluster core masses in the large samples, expected from current and future surveys.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based we ak lensing observations of 19 South Pole Telescope (SPT) selected clusters at redshifts $0.29 leq z leq 0.61$ and combine them with previously reported space-based observations of 13 galaxy clusters at redshifts $0.576 leq z leq 1.132$ to constrain the cluster mass scaling relations with the Sunyaev-Zeldovich effect (SZE), the cluster gas mass mgas, and yx, the product of mgas and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence). Our constraints on the mass--X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass--SZE scaling relation are consistent with the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا