ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Tc superconductivity and antiferromagnetism in multilayer cuprates: 63Cu- and 19F-NMR on five-layer Ba2Ca4Cu5O10(F,O)2

136   0   0.0 ( 0 )
 نشر من قبل Sunao Shimizu
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report systematic Cu- and F-NMR measurements of five-layered high-Tc cuprates Ba2Ca4Cu5O10(F,O)2. It is revealed that antiferromagnetism (AFM) uniformly coexists with superconductivity (SC) in underdoped regions, and that the critical hole density pc for AFM is ~ 0.11 in the five-layered compound. We present the layer-number dependence of AFM and SC phase diagrams in hole-doped cuprates, where pc for n-layered compounds, pc(n), increases from pc(1) ~ 0.02 in LSCO or pc(2) ~ 0.05 in YBCO to pc(5) ~ 0.11. The variation of pc(n) is attributed to interlayer magnetic coupling, which becomes stronger with increasing n. In addition, we focus on the ground-state phase diagram of CuO2 planes, where AFM metallic states in slightly doped Mott insulators change into the uniformly mixed phase of AFM and SC and into simple d-wave SC states. The maximum Tc exists just outside the quantum critical hole density, at which AFM moments on a CuO2 plane collapse at the ground state, indicating an intimate relationship between AFM and SC. These characteristics of the ground state are accounted for by the Mott physics based on the t-J model; the attractive interaction of high-Tc SC, which raises Tc as high as 160 K, is an in-plane superexchange interaction Jin (~ 0.12 eV), and the large Jin binds electrons of opposite spins between neighboring sites. It is the Coulomb repulsive interaction U ~ (> 6 eV) between Cu-3d electrons that plays a central role in the physics behind high-Tc phenomena.



قيم البحث

اقرأ أيضاً

We report on the phase diagram of antiferromagnetism (AFM) and superconductivity (SC) in three-layered Ba_2Ca_2Cu_3O_6(F,O)_2 by means of Cu-NMR measurements. It is demonstrated that AFM and SC uniformly coexist in three-layered compounds as well as in four- and five-layered ones. The critical hole density p_c for the long range AFM order is determined as p_c ~ 0.075, which is larger than p_c ~ 0.02 and 0.055 in single- and bi-layered compounds, and smaller than p_c ~ 0.08-0.09 and 0.10-0.11 in four- and five-layered compounds, respectively. This variation of p_c is attributed to the magnetic interlayer coupling which becomes stronger as the stacking number of CuO_2 layers increases; that is, the uniform coexistence of AFM and SC is a universal phenomenon in underdoped regions when a magnetic interlayer coupling is strong enough to stabilize an AFM ordering. In addition, we highlight an unusual pseudogap behavior in three-layered compounds -- the gap behavior in low-energy magnetic excitations collapses in an underdoped region where the ground state is the AFM-SC mixed phase.
Local antiferromagnetism coexists with superconductivity in the cuprates. Charge segregation provides a way to reconcile these properties. Direct evidence for modulated spin and charge densities has been found in neutron and X-ray scattering studies of Nd-doped La(2-x)Sr(x)CuO(4). Here we discuss the nature of the modulation, and present some new results for a Zn-doped sample. Some of the open questions concerning the connections between segregation and superconductivity are described.
To address the issues of superconducting and charge properties in high-T$_c$ cuprates, we perform a quantum Monte Carlo study of an extended three-band Emery model, which explicitly includes attractive interaction $V_{OO}$ between oxygen orbitals. In the physically relevant parameter range, we find that $V_{OO}$ acts to strongly enhance the long-range part of d-wave pairing correlation, with a clear tendency to form long-range superconducting order in the thermodynamic limit. Simultaneously, increasing $|V_{OO}|$ renders a rapid increase of the nematic charge structure factor at most of wavevectors, especially near $textbf{q}=(0,0)$, indicating a dramatic enhancement of nematicity and charge density waves. Our findings suggest that the attraction between oxygen orbitals in high-T$_c$ cuprates is a common thread linking their superconducting and charge properties.
We report $^{63}$Cu- and $^{205}$Tl-NMR studies on six-layered ($n$=6) high-$T_c$ superconducting (SC) cuprate TlBa$_2$Ca$_5$Cu$_6$O$_{14+delta}$ (Tl1256) with $T_csim$100 K, which reveal that antiferromagnetic (AFM) order takes place below $T_{rm N} sim$170 K. In this compound, four underdoped inner CuO$_2$ planes ($n$(IP)=4) sandwiched by two outer planes (OPs) are responsible for the onset of AFM order, whereas the nearly optimally-doped OPs responsible for the onset of bulk SC. It is pointed out that an increase in the out-of-plane magnetic interaction within an intra-unit-cell causes $T_{rm N}sim$ 45 K for Tl1245 with $n$(IP)=3 to increase to $sim$170 K for Tl1256 with $n$(IP)=4. It is remarkable that the marked increase in $T_{rm N}$ and the AFM moments for the IPs does not bring about any reduction in $T_c$, since $T_csim 100$ K is maintained for both compounds with nearly optimally doped OP. We highlight the fact that the SC order for $nge5$ is mostly dominated by the long-range in-plane SC correlation even in the multilayered structure, which is insensitive to the magnitude of $T_{rm N}$ and the AFM moments at the IPs or the AFM interaction among the IPs. These results demonstrate a novel interplay between the SC and AFM orders when the charge imbalance between the IPs and OP is significantly large.
We report on the observation of high-T_c superconductivity (SC) emerging with the background of an antiferromagnetic (AFM) order in the five-layered cuprate Ba_2Ca_4Cu_5O_10(F,O)_2 through 19F-NMR and zero-field Cu-NMR studies. The measurements of sp ectrum and nuclear spin-lattice relaxation rates 19(1/T_1) of 19F-NMR give convincing evidence for the AFM order taking place below T_N = 175 K and for the onset of SC below T_c = 52 K, hence both coexisting. The zero-field Cu-NMR study has revealed that AFM moments at Cu sites are 0.14 mu_B at outer CuO_2 layers and 0.20 mu_B at inner ones. We remark that an intimate coupling exists between the AFM state and the SC order parameter below T_c = 52 K; the spin alignment in the AFM state is presumably changed in the SC-AFM mixed state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا