ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics of the Galactic Center Cloud G2, on its Way towards the Super-Massive Black Hole

239   0   0.0 ( 0 )
 نشر من قبل Andreas Burkert
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin, structure and evolution of the small gas cloud, G2, is investigated, that is on an orbit almost straight into the Galactic central supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion zone of Sgr A*, requiring gas temperatures and densities that agree well with models of captured shock-heated stellar winds. Its mass is equal to the critical mass below which cold clumps would be destroyed quickly by evaporation. Its mass is also constrained by the fact that at apocenter its sound crossing timescale was equal to its orbital timescale. Our numerical simulations show that the observed structure and evolution of G2 can be well reproduced if it formed in pressure equilibrium with the surrounding in 1995 at a distance from the SMBH of 7.6e16 cm. If the cloud would have formed at apocenter in the clockwise stellar disk as expected from its orbit, it would be torn into a very elongated spaghetti-like filament by 2011 which is not observed. This problem can be solved if G2 is the head of a larger, shell-like structure that formed at apocenter. Our numerical simulations show that this scenario explains not only G2s observed kinematical and geometrical properties but also the Br_gamma observations of a low surface brightness gas tail that trails the cloud. In 2013, while passing the SMBH G2 will break up into a string of droplets that within the next 30 years mix with the surrounding hot gas and trigger cycles of AGN activity.



قيم البحث

اقرأ أيضاً

Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is s urprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the clouds orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black holes gravitational force. The clouds dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the super-massive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.
We analyse and report in detail new near-infrared (1.45 - 2.45 microns) observations of the Dusty S-cluster Object (DSO/G2) during its approach to the black hole at the center of the Galaxy that were carried out with ESO VLT/SINFONI between February and September 2014. Before May 2014 we detect spatially compact Br-gamma and Pa-alpha line emission from the DSO at about 40mas east of SgrA*. The velocity of the source, measured from the red-shifted emission, is 2700+-60 km/s. No blue-shifted emission above the noise level is detected at the position of SgrA* or upstream the presumed orbit. After May we find spatially compact Br-gamma blue-shifted line emission from the DSO at about 30mas west of SgrA* at a velocity of -3320+-60 km/s and no indication for significant red-shifted emission. We do not detect any significant extension of velocity gradient across the source. We find a Br-gamma-line full width at half maximum of 50+-10 Angstroem before and 15+-10 Angstroem after the peribothron transit, i.e. no significant line broadening with respect to last year is observed. Br-gamma line maps show that the bulk of the line emission originates from a region of less than 20mas diameter. This is consistent with a very compact source on an elliptical orbit with a peribothron time passage in 2014.39+-0.14. For the moment, the flaring activity of the black hole in the near-infrared regime has not shown any statistically significant increment. Increased accretion activity of SgrA* may still be upcoming. We discuss details of a source model according to which the DSO is rather a young accreting star than a coreless gas and dust cloud.
In 2011, we discovered a compact gas cloud (G2) with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic Center. The orbit is well constrained and pericenter passage is predicted for early 2 014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black holes force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the clouds material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.
We have further followed the evolution of the orbital and physical properties of G2, the object currently falling toward the massive black hole in the Galactic Center on a near-radial orbit. New, very sensitive data were taken in April 2013 with NACO and SINFONI at the ESO VLT . The head of G2 continues to be stretched ever further along the orbit in position-velocity space. A fraction of its emission appears to be already emerging on the blue-shifted side of the orbit, past pericenter approach. Ionized gas in the head is now stretched over more than 15,000 Schwarzschild radii RS around the pericenter of the orbit, at ~ 2000 RS ~ 20 light hours from the black hole. The pericenter passage of G2 will be a process stretching over a period of at least one year. The Brackett-{gamma} luminosity of the head has been constant over the past 9 years, to within +- 25%, as have the line ratios Brackett-{gamma} / Paschen-{alpha} and Brackett-{gamma} / Helium-I. We do not see any significant evidence for deviations of G2s dynamical evolution, due to hydrodynamical interactions with the hot gas around the black hole, from a ballistic orbit of an initially compact cloud with moderate velocity dispersion. The constant luminosity and the increasingly stretched appearance of the head of G2 in the position-velocity plane, without a central peak, is not consistent with several proposed models with continuous gas release from an initially bound zone around a faint star on the same orbit as G2.
We present new observations of the recently discovered gas cloud G2 currently falling towards the massive black hole in the Galactic Center. The new data confirm that G2 is on a highly elliptical orbit with a predicted pericenter passage mid 2013. Th e updated orbit has an even larger eccentricity of 0.966, an epoch of pericenter two months later than estimated before, and a nominal minimum distance of 2200 Schwarzschild radii only. The velocity gradient of G2 has developed further to 600 km/s FWHM in summer 2012. We also detect the tail of similar total flux and on the same orbit as G2 along the trajectory at high significance. No hydrodynamic effects are detected yet, since the simple model of a tidally shearing gas cloud still describes the data very well. The flux of G2 has not changed by more than 10% between 2008 and 2012, disfavoring models where additional gas from a reservoir is released to the disrupting diffuse gas component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا