ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary modules for the twisted Heisenberg-Virasoro algebra

327   0   0.0 ( 0 )
 نشر من قبل Xiufu Zhang
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the conjugate-linear anti-involutions and the unitary irreducible modules of the intermediate series over the twisted Heisenberg-Virasoro algebra are classified respectively. We prove that any unitary irreducible module of the intermediate series over the twisted Heisenberg-Virasoro algebra is of the form $mathcal{A}_{a,b,c}$ for $ain mathbb{R}, bin 1/2+sqrt{-1}mathbb{R}, cin mathbb{C}.$



قيم البحث

اقرأ أيضاً

2-local derivation is a generalized derivation for a Lie algebra, which plays an important role to the study of local properties of the structure of the Lie algebra. In this paper, we prove that every 2-local derivation on the twisted Heisenberg-Virasoro algebra is a derivation.
224 - Dong Liu , Cuipo Jiang 2008
In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
302 - Xiufu Zhang , Shaobin Tan 2009
In this paper, Whittaker modules for the Schrodinger-Virasoro algebra $mathfrak{sv}$ are defined. The Whittaker vectors and the irreducibility of the Whittaker modules are studied. $mathfrak{sv}$ has a triangular decomposition according to the Cartan algebra $mathfrak{h}:$ $$mathfrak{sv}=mathfrak{sv}^{-}oplusmathfrak{h}oplusmathfrak{sv}^{+}.$$ For any Lie algebra homomorphism $psi:mathfrak{sv}^{+}tomathbb{C}$, we can define Whittaker modules of type $psi.$ When $psi$ is nonsingular, the Whittaker vectors, the irreducibility and the classification of Whittaker modules are completely determined. When $psi$ is singular, by constructing some special Whittaker vectors, we find that the Whittaker modules are all reducible. Moreover, we get some more precise results for special $psi$.
67 - Hongyan Guo 2020
We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $V_{mathcal{L}}(ell_{123},0)$.Then, for any integer $t>1$, we introduce a new Lie algebra $mathcal{L}_{t}$, and show that $sigma_{t}$-twisted $V_{mat hcal{L}}(ell_{123},0)$($ell_{2}=0$)-modules are in one-to-one correspondence with restricted $mathcal{L}_{t}$-modules of level $ell_{13}$, where $sigma_{t}$ is an order $t$ automorphism of $V_{mathcal{L}}(ell_{123},0)$. At the end, we give a complete list of irreducible $sigma_{t}$-twisted $V_{mathcal{L}}(ell_{123},0)$($ell_{2}=0$)-modules.
323 - Xiufu Zhang , Shaobin Tan 2012
In this paper, conjugate-linear anti-involutions and unitary Harish-Chandra modules over the Schr{o}dinger-Virasoro algebra are studied. It is proved that there are only two classes conjugate-linear anti-involutions over the Schr{o}dinger-Virasoro al gebra. The main result of this paper is that a unitary Harish-Chandra module over the Schr{o}dinger-Virasoro algebra is simply a unitary Harish-Chandra module over the Virasoro algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا