ﻻ يوجد ملخص باللغة العربية
In this paper, a fully discrete local discontinuous Galerkin (LDG) finite element method is considered for solving the time-fractional KdV-Burgers-Kuramoto (KBK) equation. The scheme is based on a finite difference method in time and local discontinuous Galerkin methods in space. We prove that our scheme is unconditional stable and $L^2$ error estimate for the linear case with the convergence rate $O(h^{k+1}+(Delta t)^2+(Delta t)^frac{alpha}{2}h^{k+1/2})$. Numerical examples are presented to show the efficiency and accuracy of our scheme.
The tempered fractional diffusion equation could be recognized as the generalization of the classic fractional diffusion equation that the truncation effects are included in the bounded domains. This paper focuses on designing the high order fully di
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and c
We present a new class of iterative schemes for solving initial value problems (IVP) based on discontinuous Galerkin (DG) methods. Starting from the weak DG formulation of an IVP, we derive a new iterative method based on a preconditioned Picard iter
We propose a weak Galerkin(WG) finite element method for solving the one-dimensional Burgers equation. Based on a new weak variational form, both semi-discrete and fully-discrete WG finite element schemes are established and analyzed. We prove the ex
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu