ترغب بنشر مسار تعليمي؟ اضغط هنا

AGN emission processes of NGC 4945 in the X-rays and gamma-rays

134   0   0.0 ( 0 )
 نشر من قبل Volker Beckmann
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the non-thermal component in the gamma-rays. For the thermal process, we obtain a photon index of Gamma=1.6, a cut-off energy of Ec ~ 150 keV and a hydrogen column density of NH = 6e24 1/cm**2. The non-thermal process has a photon index of Gamma=2.0 and a flux of F(0.1-100 GeV) = 1.4e-11 erg/cm**2/sec. The spectral energy distribution gives a total unabsorbed flux of F(2 keV - 100 GeV) = 5e-10 erg/cm**2/sec and a luminosity of L(2 keV - 100 GeV) = 9e41 erg/sec at a distance of 3.7 Mpc. It appears more reasonable that the gamma-ray emission is independent from the AGN and could be caused e.g. by shock processes in the starburst regions of the host galaxy.



قيم البحث

اقرأ أيضاً

The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR anisotropy region detected by Pierre Auger Observatory. The nearby starburst galaxy (SBG), NGC 4945, is close to this anisotropic region and inside the mean angular error of the IC35 event. Considering the hypernovae contribution located in the SB region of NGC 4945, which can accelerate protons up to $sim 10^{17} , {rm eV}$ and inject them into the interstellar medium, we investigate the origin of this event around this starburst galaxy. We show that the interaction of these protons with the SB regions gas density could explain Fermi-LAT gamma-ray and radio observations if the magnetic fields strength in the SB region is the order of $sim rm mG$. Our estimated PeV neutrino events, in ten years, for this source is approximately 0.01 ($4times10^{-4}$) if a proton spectral index of 2.4 (2.7) is considered, which would demonstrate that IC35 is not produced in the central region of this SBG. Additionally, we consider the superwind region of NGC 4945 and show that protons can hardly be accelerated in it up to UHEs.
We present the spectral signatures of the Bethe-Heitler pair production ($pe$) process on the spectral energy distribution (SED) of blazars, in scenarios where the hard $gamma$-ray emission is of photohadronic origin. If relativistic protons interact with the synchrotron blazar photons producing $gamma$ rays through photopion processes, we show that, besides the $2-20$ PeV neutrino emission, the typical blazar SED should have an emission feature due to the synchrotron emission of $pe$ secondaries that bridges the gap betweeen the low-and high-energy humps of the SED, namely in the energy range 40 keV-40 MeV. We first present analytical expressions for the photopion and $pe$ loss rates in terms of observable quantities of blazar emission. For the $pe$ loss rate in particular, we derive a new approximate analytical expression for the case of a power-law photon distribution, which has an excellent accuracy with the numerically calculated exact one, especially at energies above the threshold for pair production. We show that for typical blazar parameters, the photopair synchrotron emission emerges in the hard X-ray/soft $gamma$-ray energy range with a characteristic spectral shape and non negligible flux, which may be even comparable to the hard $gamma$-ray flux produced through photopion processes. We argue that the expected $pe$ bumps are a natural consequence of leptohadronic models, and as such, they may indicate that blazars with a three-hump SED are possible emitters of high-energy neutrinos.
The complex interplay of processes at the Galactic Center is at the heart of numerous past, present, and (likely) future mysteries. We aim at a more complete understanding of how spectra extending to >10 TeV result. We first construct a simplified mo del to account for the peculiar energy and angular dependence of the intense central parsec photon field. This allows for calculating anisotropic inverse Compton scattering and mapping gamma-ray extinction due to gamma gamma -> e^+ e^- attenuation. Coupling these with a method for evolving electron spectra, we examine several clear and present excesses, including the diffuse hard X-rays seen by NuSTAR and GeV gamma rays by Fermi. We address further applications to cosmic rays, dark matter, neutrinos, and gamma rays from the Center and beyond.
156 - S. Soldi 2010
We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert galaxies, a considerable amount of INTEGRAL data have already been accumulated and are publicly available, allowing detailed spectral variability studies at hard X-rays.
We report the first detection of hard (>10 keV) X-ray emission simultaneous with gamma rays in a nova eruption. Observations of the nova V5855 Sgr carried out with the NuSTAR satellite on Day 12 of the eruption revealed faint, highly absorbed thermal X-rays. The extreme equivalent hydrogen column density towards the X-ray emitting region (~3 x 10$^{24}$ cm$^{-2}$) indicates that the shock producing the X-rays was deeply embedded within the nova ejecta. The slope of the X-ray spectrum favors a thermal origin for the bulk of the emission, and the constraints of the temperature in the shocked region suggest a shock velocity compatible with the ejecta velocities inferred from optical spectroscopy. While we do not claim the detection of non-thermal X-rays, the data do not allow us to rule out an additional, fainter component dominating at energy above 20 keV, for which we obtained upper limits. The inferred luminosity of the thermal X-rays is too low to be consistent with the gamma-ray luminosities if both are powered by the same shock under standard assumptions regarding the efficiency of non-thermal particle acceleration and the temperature distribution of the shocked gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا