ﻻ يوجد ملخص باللغة العربية
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. This paper introduces a topic modeling toolbox (TMBP) based on the belief propagation (BP) algorithms. TMBP toolbox is implemented by MEX C++/Matlab/Octave for either Windows 7 or Linux. Compared with existing topic modeling packages, the novelty of this toolbox lies in the BP algorithms for learning LDA-based topic models. The current version includes BP algorithms for latent Dirichlet allocation (LDA), author-topic models (ATM), relational topic models (RTM), and labeled LDA (LaLDA). This toolbox is an ongoing project and more BP-based algorithms for various topic models will be added in the near future. Interested users may also extend BP algorithms for learning more complicated topic models. The source codes are freely available under the GNU General Public Licence, Version 1.0 at https://mloss.org/software/view/399/.
Fast convergence speed is a desired property for training latent Dirichlet allocation (LDA), especially in online and parallel topic modeling for massive data sets. This paper presents a novel residual belief propagation (RBP) algorithm to accelerate
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. T
We propose a nonparametric generalization of belief propagation, Kernel Belief Propagation (KBP), for pairwise Markov random fields. Messages are represented as functions in a reproducing kernel Hilbert space (RKHS), and message updates are simple li
Learned neural solvers have successfully been used to solve combinatorial optimization and decision problems. More general counting variants of these problems, however, are still largely solved with hand-crafted solvers. To bridge this gap, we introd
We propose a topic modeling approach to the prediction of preferences in pairwise comparisons. We develop a new generative model for pairwise comparisons that accounts for multiple shared latent rankings that are prevalent in a population of users. T