ﻻ يوجد ملخص باللغة العربية
The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ears high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.
The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we co
Recent experiments showed that multiple copies of the molecular machine RNA polymerase (RNAP) can efficiently synthesize mRNA collectively in the active state of the promoter. However, environmentally-induced promoter repression results in long-dista
A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing
Nascent adhesions are submicron transient structures promoting the early adhesion of cells to the extracellular matrix. Nascent adhesions typically consist of several tens of integrins, and serve as platforms for the recruitment and activation of pro
The internal cell wall structure of the bacterium Lactobacillus helveticus has been observed in situ in aqueous solution using an atomic force microscope (AFM). The AFM tip was used not only for imaging but presumably to remove mechanically large pat