ﻻ يوجد ملخص باللغة العربية
We discuss the temporal distribution of dynamic processes in driven polymer transport inherent to flexible chains due to stochastic tension propagation. The stochasticity originates from the disordered initial configuration of an equilibrium polymer coil, which results in random paths for tension propagation. We consider the process time for when translocation occurs across a fixed pore and when stretching occurs by pulling the chain end. A scaling argument for the mean and standard deviation of the process time is provided using the two-phase picture for stochastic propagation. The two cases are found to differ remarkably. The process time distribution of the translocation exhibits substantial spreading even in the long-chain limit, unlike that found for the dynamics of polymer stretching. In addition, the process time distribution in the driven translocation is shown to have a characteristic asymmetric shape.
We present a Brownian dynamics model of driven polymer translocation, in which non-equilibrium memory effects arising from tension propagation (TP) along the cis side subchain are incorporated as a time-dependent friction. To solve the effective fric
Two phase picture is a simple and effective methodology to capture the nonequilibrium dynamics of polymer associated with tension propagation. When applying it to the driven translocation process, there is a point to be noted, as briefly discussed in
During polymer translocation driven by e.g. voltage drop across a nanopore, the segments in the cis-side is incessantly pulled into the pore, which are then pushed out of it into the trans-side. This pulling and pushing polymer segments are described
We discuss temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TD
It is widely believed that the swimming speed, $v$, of many flagellated bacteria is a non-monotonic function of the concentration, $c$, of high-molecular-weight linear polymers in aqueous solution, showing peaked $v(c)$ curves. Pores in the polymer s