ترغب بنشر مسار تعليمي؟ اضغط هنا

Finding Density Functionals with Machine Learning

138   0   0.0 ( 0 )
 نشر من قبل John Snyder
 تاريخ النشر 2011
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of non-interacting fermions in 1d, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. Challenges for application of our method to real electronic structure problems are discussed.



قيم البحث

اقرأ أيضاً

Kernel ridge regression is used to approximate the kinetic energy of non-interacting fermions in a one-dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, and highly accu rate energies are achieved. Accurate {em constrained optimal densities} are found via a modified Euler-Lagrange constrained minimization of the total energy. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields, ranging from materials science to biochemistry to astrophysics. Machine learning holds the promise of learning the kinetic energy functional via examples, by-passing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing either larger systems or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. Both improved accuracy and lower computational cost with this method are demonstrated by reproducing DFT energies for a range of molecular geometries generated during molecular dynamics simulations. Moreover, the methodology could be applied directly to quantum chemical calculations, allowing construction of density functionals of quantum-chemical accuracy.
We explore the feasibility of using machine learning methods to obtain an analytic form of the classical free energy functional for two model fluids, hard rods and Lennard--Jones, in one dimension . The Equation Learning Network proposed in Ref. 1 is suitably modified to construct free energy densities which are functions of a set of weighted densities and which are built from a small number of basis functions with flexible combination rules. This setup considerably enlarges the functional space used in the machine learning optimization as compared to previous work 2 where the functional is limited to a simple polynomial form. As a result, we find a good approximation for the exact hard rod functional and its direct correlation function. For the Lennard--Jones fluid, we let the network learn (i) the full excess free energy functional and (ii) the excess free energy functional related to interparticle attractions. Both functionals show a good agreement with simulated density profiles for thermodynamic parameters inside and outside the training region.
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c omputational scaling of traditional local or semi-local approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn-Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange-correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly-correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of non-locality.
Computing accurate reaction rates is a central challenge in computational chemistry and biology because of the high cost of free energy estimation with unbiased molecular dynamics. In this work, a data-driven machine learning algorithm is devised to learn collective variables with a multitask neural network, where a common upstream part reduces the high dimensionality of atomic configurations to a low dimensional latent space, and separate downstream parts map the latent space to predictions of basin class labels and potential energies. The resulting latent space is shown to be an effective low-dimensional representation, capturing the reaction progress and guiding effective umbrella sampling to obtain accurate free energy landscapes. This approach is successfully applied to model systems including a 5D Muller Brown model, a 5D three-well model, and alanine dipeptide in vacuum. This approach enables automated dimensionality reduction for energy controlled reactions in complex systems, offers a unified framework that can be trained with limited data, and outperforms single-task learning approaches, including autoencoders.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا