ﻻ يوجد ملخص باللغة العربية
Thermal instability (TI) can strongly affect the structure and dynamics of the interstellar medium (ISM) in the Milky Way and other disk galaxies. Thermal conduction plays an important role in the TI by stabilizing small scales and limiting the size of the smallest condensates. In the magnetized ISM, however, heat is conducted anisotropically (primarily along magnetic field lines). We investigate the effects of anisotropic thermal conduction on the nonlinear regime of the TI by performing two-dimensional magnetohydrodynamic simulations. We present models with magnetic fields of different initial geometries and strengths, and compare them to hydrodynamic models with isotropic conduction. We find anisotropic conduction does not significantly alter the overall density and temperature statistics in the saturated state of the TI. However, it can strongly affect the shapes and sizes of cold clouds formed by the TI. For example, for uniform initial fields long filaments of cold gas are produced that are reminiscent of some observed HI clouds. For initially tangled fields, such filaments are not produced. We also show that anisotropic conduction suppresses turbulence generated by evaporative flows from the surfaces of cold blobs, which may have implications for mechanisms for driving turbulence in the ISM.
The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM
Large reservoirs of cold (~ 10^4 K) gas exist out to and beyond the virial radius in the circumgalactic medium (CGM) of all types of galaxies. Photoionization modeling suggests that cold CGM gas has significantly lower densities than expected by theo
We present a generic mechanism for the thermal damping of compressive waves in the interstellar medium (ISM), occurring due to radiative cooling. We solve for the dispersion relation of magnetosonic waves in a two-fluid (ion-neutral) system in which
Interstellar thermal pressures can be measured using C I absorption lines that probe the pressure-sensitive populations of the fine-structure levels of its ground state. In a survey of C I absorption toward Galactic hot stars, Jenkins & Tripp (2011)
The large temperature difference between cold gas clouds around galaxies and the hot halos that they are moving through suggests that thermal conduction could play an important role in the circumgalactic medium. However, thermal conduction in the pre