ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the radio synchrotron emission induced by WIMP dark matter annihilations and decays in extragalactic halos. We compute intensity, angular correlation, and source counts and discuss the impact on the expected signals of dark matter clustering, as well as of other astrophysical uncertainties as magnetic fields and spatial diffusion. Bounds on dark matter microscopic properties are then derived, and, depending on the specific set of assumptions, they are competitive with constraints from other indirect dark matter searches. At GHz frequencies, dark matter sources can become a significant fraction of the total number of sources with brightness below the microJansky level. We show that, at this level of fluxes (which are within the reach of the next-generation radio surveys), properties of the faint edge of differential source counts, as well as angular correlation data, can become an important probe for WIMPs.
Conventionally, one can constrain the dark matter (DM) interaction with DM mass heavier than GeV by searching for DM induced synchrotron emission in the radio frequency band. However, an MeV DM can also generate detectable radio emission if electrons
If Dark Matter (DM) is composed by Weakly Interacting Massive Particles, its annihilation in the halos harboring the earliest star formation episode may strongly influence the first generation of stars (Population III). Whereas DM annihilation at ear
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte
We study spherically symmetric solutions with a scalar field in the shift-symmetric subclass of the Horndeski theory. Constructing an effective energy-momentum tensor of the scalar field based on the two-fluid model, we decompose the scalar field int
We explore the model-independent constraints from cosmology on a dark-matter particle with no prominent standard model interactions that interacts and thermalizes with other particles in a hidden sector. Without specifying detailed hidden-sector part