ﻻ يوجد ملخص باللغة العربية
Planar metamaterials have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size. By positioning the metamaterial sensing platform close to the sub-diffraction terahertz source, the number of excited resonators, and hence minimal film area, are significantly reduced. As an additional advantage, a reduction in the number of excited resonators decreases the inter-cell coupling strength, and consequently the resonance Q factor is remarkably increased. The experimental results show that the resonance Q factor is improved by 113%. Moreover, for a film with a thickness of lambda/375 the minimal area can be as small as 0.2lambda by 0.2lambda. The success of this work provides a platform for future metamaterial-based sensors for biomolecular detection.
Fingerprint spectral response of several materials with terahertz electromagnetic radiation indicates that terahertz technology is an effective tool for sensing applications. However, sensing few nanometer thin-film of dielectrics with much longer te
In transmission-mode terahertz time-domain spectroscopy (THz-TDS), the thickness of a sample is a critical factor that determines an amount of the interaction between terahertz waves and bulk material. If the interaction length is too small, a change
Negative index metamaterials (NIMs) give rise to unusual and intriguing properties and phenomena, which may lead to important applications such as superlens, subwavelength cavity and slow light devices. However, the negative refractive index in metam
We theoretically investigate the terahertz dielectric response of a semiconductor slab hosting an infrared photoinduced grating. The periodic structure is due to the charge carries photo-excited by the interference of two tilted infrared plane waves
It is shown theoretically that a nonchiral, two-dimensional array of metallic spheres exhibits optical activity as manifested in calculations of circular dichroism. The metallic spheres occupy the sites of a rectangular lattice and for off-normal inc