In this paper we revisit the dynamical dark energy model building based on single scalar field involving higher derivative terms. By imposing a degenerate condition on the higher derivatives in curved spacetime, one can select the models which are free from the ghost mode and the equation of state is able to cross the cosmological constant boundary smoothly, dynamically violate the null energy condition. Generally the Lagrangian of this type of dark energy models depends on the second derivatives linearly. It behaves like an imperfect fluid, thus its cosmological perturbation theory needs to be generalized. We also study such a model with explicit form of degenerate Lagrangian and show that its equation of state may cross -1 without any instability.