ﻻ يوجد ملخص باللغة العربية
Bogoliubovs theory states that self-interaction effects in Bose-Einstein condensates produce a characteristic linear dispersion at low momenta. One of the curious features of Bogoliubovs theory is that the new quasiparticles in the system are linear combinations of creation and destruction operators of the bosons. In exciton-polariton condensates, this gives the possibility of directly observing the negative branch of the Bogoliubov dispersion in the photoluminescence (PL) emission. Here we theoretically examine the PL spectra of exciton-polariton condensates taking into account of reservoir effects. At sufficiently high excitation densities, the negative dispersion becomes visible. We also discuss the possibility for relaxation oscillations to occur under conditions of strong reservoir coupling. This is found to give a secondary mechanism for making the negative branch visible.
We predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton inter- action generates complex dynamics in the weak-lasing domai
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a sup
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent
An infinite chain of driven-dissipative condensate spins with uniform nearest-neighbor coherent coupling is solved analytically and investigated numerically. Above a critical occupation threshold the condensates undergo spontaneous spin bifurcation (
The crossover between low and high density regimes of exciton-polariton condensates is examined using a BCS wavefunction approach. Our approach is an extension of the BEC-BCS crossover theory for excitons, but includes a cavity photon field. The appr