ﻻ يوجد ملخص باللغة العربية
We study the Bose-Einstein condensation of fermionic pairs in the uniform neutron matter by using the concept of the off-diagonal long-range order of the two-body density matrix of the system. We derive explicit formulas for the condensate density $rho_c$ and the condensate fraction $rho_c/rho$ in terms of the scaled pairing energy gap $Delta/epsilon_F$, where $epsilon_F$ is the Fermi energy. We calculate the condensate fraction $rho_c/rho$ as a function of the density $rho$ by using previously obtained results for the pairing gap $Delta$. We find the maximum condensate fraction $(rho_c/rho)_{max}= 0.42$ at the density $rho=5.3cdot 10^{-4}$ fm$^{-3}$, which corresponds to the Fermi wave number $k_F= 0.25$ fm$^{-1}$.
We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading ord
We study the properties of a spin-down neutron impurity immersed in a low-density free Fermi gas of spin-up neutrons. In particular, we analyze its energy ($E_downarrow$), effective mass ($m^*_downarrow$) and quasiparticle residue ($Z_downarrow$). Re
We review the properties of neutron matter in the low-density regime. In particular, we revise its ground state energy and the superfluid neutron pairing gap, and analyze their evolution from the weak to the strong coupling regime. The calculations o
We have identified a mechanism of collective nuclear de-excitation in a Bose-Einstein condensate of $^{135}$Cs atoms in their isomeric states, $^{135m}$Cs, suitable for the generation of coherent gamma photons. The process described here does not cor
We investigate dense nuclear matter with a dibaryon Bose-Einstein condensate as a possible intermediate state before the quark-gluon phase transition. An exact analysis of this state of matter is presented in a one-dimensional model. The analysis is