ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum random walks with multiphoton interference and high order correlation functions

81   0   0.0 ( 0 )
 نشر من قبل Bryan Gard
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show a simulation of quantum random walks with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and introduce one, two, and threefold coincidence detection schemes. The use of Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these quantum random walks.



قيم البحث

اقرأ أيضاً

The estimation of high order correlation function values is an important problem in the field of quantum computation. We show that the problem can be reduced to preparation and measurement of optical quantum states resulting after annihilation of a s et number of quanta from the original beam. We apply this approach to explore various photon bunching regimes in optical states with gamma-compounded Poisson photon number statistics. We prepare and perform measurement of the thermal quantum state as well as states produced by subtracting one to ten photons from it. Maximum likelihood estimation is employed for parameter estimation. The goal of this research is the development of highly accurate procedures for generation and quality control of optical quantum states.
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the quantum trajectory point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time- step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.
Quantum Fourier transforms (QFT) have gained increased attention with the rise of quantum walks, boson sampling, and quantum metrology. Here we present and demonstrate a general technique that simplifies the construction of QFT interferometers using both path and polarization modes. On that basis, we first observed the generalized Hong-Ou-Mandel effect with up to four photons. Furthermore, we directly exploited number-path entanglement generated in these QFT interferometers and demonstrated optical phase supersensitivities deterministically.
We study the asymptotic position distribution of general quantum walks on a lattice, including walks with a random coin, which is chosen from step to step by a general Markov chain. In the unitary (i.e., non-random) case, we allow any unitary operato r, which commutes with translations, and couples only sites at a finite distance from each other. For example, a single step of the walk could be composed of any finite succession of different shift and coin operations in the usual sense, with any lattice dimension and coin dimension. We find ballistic scaling, and establish a direct method for computing the asymptotic distribution of position divided by time, namely as the distribution of the discrete time analog of the group velocity. In the random case, we let a Markov chain (control process) pick in each step one of finitely many unitary walks, in the sense described above. In ballistic order we find a non-random drift, which depends only on the mean of the control process and not on the initial state. In diffusive scaling the limiting distribution is asymptotically Gaussian, with a covariance matrix (diffusion matrix) depending on momentum. The diffusion matrix depends not only on the mean but also on the transition rates of the control process. In the non-random limit, i.e., when the coins chosen are all very close, or the transition rates of the control process are small, leading to long intervals of ballistic evolution, the diffusion matrix diverges. Our method is based on spatial Fourier transforms, and the first and second order perturbation theory of the eigenvalue 1 of the transition operator for each value of the momentum.
In this paper, we explore quantum interference in molecular conductance from the point of view of graph theory and walks on lattices. By virtue of the Cayley-Hamilton theorem for characteristic polynomials and the Coulson-Rushbrooke pairing theorem f or alternant hydrocarbons, it is possible to derive a finite series expansion of the Greens function for electron transmission in terms of the odd powers of the vertex adjacency matrix or H{u}ckel matrix. This means that only odd-length walks on a molecular graph contribute to the conductivity through a molecule. Thus, if there are only even-length walks between two atoms, quantum interference is expected to occur in the electron transport between them. However, even if there are only odd-length walks between two atoms, a situation may come about where the contributions to the QI of some odd-length walks are canceled by others, leading to another class of quantum interference. For non-alternant hydrocarbons, the finite Greens function expansion may include both even and odd powers. Nevertheless, QI can in some circumstances come about for non-alternants, from the cancellation of odd and even-length walk terms. We report some progress, but not a complete resolution of the problem of understanding the coefficients in the expansion of the Greens function in a power series of the adjacency matrix, these coefficients being behind the cancellations that we have mentioned. And we introduce a perturbation theory for transmission as well as some potentially useful infinite power series expansions of the Greens function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا