ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-short suspended single-wall carbon nanotube transistors

161   0   0.0 ( 0 )
 نشر من قبل Alexandre Champagne
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a method to fabricate clean suspended single-wall carbon nanotube (SWCNT) transistors hosting a single quantum dot ranging in length from a few 10s of nm down to $approx$ 3 nm. We first align narrow gold bow-tie junctions on top of individual SWCNTs and suspend the devices. We then use a feedback-controlled electromigration to break the gold junctions and expose nm-sized sections of SWCNTs. We measure electron transport in these devices at low temperature and show that they form clean and tunable single-electron transistors. These ultra-short suspended transistors offer the prospect of studying THz oscillators with strong electron-vibron coupling.



قيم البحث

اقرأ أيضاً

145 - I. Weymann , J. Barnas 2008
Electronic transport through a single-wall metallic carbon nanotube weakly coupled to one ferromagnetic and one nonmagnetic lead is analyzed in the sequential tunneling limit. It is shown that both the spin and charge currents flowing through such sy stems are highly asymmetric with respect to the bias reversal. As a consequence, nanotubes coupled to one nonmagnetic and one ferromagnetic lead can be effectively used as spin diodes whose functionality can be additionally controlled by a gate voltage.
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi2Te3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectri c performance. These results were reproduced well by first-principles transport simulations based on a simple SWCNT junction model. These findings suggest strategies that pave the way for emerging printed, all-carbon, flexible thermoelectric devices.
While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential inc rease in Off-current with drain voltage, due to modulation of the Schottky barriers at both the source and drain contact. We illustrate this with results for bottom-gated ambipolar CNFETs with oxides of 2 and 5 nm, and give an explicit scaling rule for the drain voltage. Above the drain voltage limit, the Off-current becomes large and has equal electron and hole contributions. This allows the recently reported light emission from appropriately biased CNFETs.
We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the s uperconducting leads is observed in both regimes and in the Kondo regime a narrow zero bias peak interpreted as a proximity induced supercurrent persist in Coulomb blockade diamonds with Kondo resonances.
A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonst rated by controlling the density of suspended nanotubes and reproducing devices multiple times on the same electrode set. Suspending the carbon nanotubes results in ambipolar transport behavior with negligible hysteresis. The Hooges constant of the suspended CNT-FETs (2.6 x 10-3) is about 20 times lower than for control CNT-FETs on SiO2 (5.6 x 10-2).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا