ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave Photonics Parallel Quantum Key Distribution

186   0   0.0 ( 0 )
 نشر من قبل Jose Capmany Prof
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The incorporation of multiplexing techniques used in Microwave Photonics to Quantum Key Distribution (QKD) systems bring important advantages enabling the simultaneous and parallel delivery of multiple keys between a central station and different end-users in the context of multipoint access and metropolitan networks, or by providing higher key distribution rates in point to point links by suitably linking the parallel distributed keys. It also allows the coexistence of classical information and quantum key distribution channels over a single optical fibre infrastructure. Here we show, for the first time to our knowledge, the successful operation of a two domain (subcarrier and wavelength division) multiplexed strong reference BB84 quantum key distribution system. A four independent channel QKD system featuring 10 kb/s/channel over an 11 km link with Quantum Bit Error Rate (QBER) < 2 % is reported. These results open the way for multi-quantum key distribution over optical fiber networks.



قيم البحث

اقرأ أيضاً

75 - Ye Yang , Yaqing Jin , Xiao Xiang 2021
By harnessing quantum superposition and entanglement, remarkable progress has sprouted over the past three decades from different areas of research in communication computation and simulation. To further improve the processing ability of microwave ph o-tonics, here, we have demonstrated a quantum microwave photonic processing system using a low jitter superconducting nanowire single photon detector (SNSPD) and a time-correlated single-photon counting (TCSPC) module. This method uniquely combines extreme optical sensitivity, down to a single-photon level (below -100 dBm), and wide processing bandwidth, twice higher than the transmission bandwidth of the cable. Moreover, benefitted from the trigger, the system can selectively process the desired RF signal and attenuates the other in-tense noise and undesired RF components even the power is 15dB greater than the desired signal power. Using this method we show microwave phase shifting and frequency filtering for the desired RF signal on the single-photon level. Besides its applications in space and under-water communications and testing and qualification of pre-packaged photonic modulators and detectors. This RF signal processing capability at the single-photon level can lead to significant development in the high-speed quantum processing method.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. In practice, the achievable distance for QKD has been limited to a few hundred kilo meters, due to the channel loss of fibers or terrestrial free space that exponentially reduced the photon rate. Satellite-based QKD promises to establish a global-scale quantum network by exploiting the negligible photon loss and decoherence in the empty out space. Here, we develop and launch a low-Earth-orbit satellite to implement decoy-state QKD with over kHz key rate from the satellite to ground over a distance up to 1200 km, which is up to 20 orders of magnitudes more efficient than that expected using an optical fiber (with 0.2 dB/km loss) of the same length. The establishment of a reliable and efficient space-to-ground link for faithful quantum state transmission constitutes a key milestone for global-scale quantum networks.
98 - Kejin Wei , Wei Li , Hao Tan 2019
Measurement-device-independent quantum key distribution (MDI-QKD) removes all detector side channels and enables secure QKD with an untrusted relay. It is suitable for building a star-type quantum access network, where the complicated and expensive m easurement devices are placed in the central untrusted relay and each user requires only a low-cost transmitter, such as an integrated photonic chip. Here, we experimentally demonstrate a 1.25 GHz silicon photonic chip-based MDI-QKD system using polarization encoding. The photonic chip transmitters integrate the necessary encoding components for a standard QKD source. We implement random modulations of polarization states and decoy intensities, and demonstrate a finite-key secret rate of 31 bps over 36 dB channel loss (or 180 km standard fiber). This key rate is higher than state-of-the-art MDI-QKD experiments. The results show that silicon photonic chip-based MDI-QKD, benefiting from miniaturization, low-cost manufacture and compatibility with CMOS microelectronics, is a promising solution for future quantum secure networks.
We designed and demonstrated experimentally a silicon photonics integrated dynamic polarization controller which is a crucial component of a continuous-variable quantum key distribution system. By using a variable step simulated annealing approach, w e achieve a dynamic polarization extinction ratio greater than 25 dB. The dynamic polarization controller can be utilized in silicon photonics integrated continuous-variable quantum key distribution system to minimize the size and decrease the cost further.
Integrated quantum photonic applications, providing physially guaranteed communications security, sub-shot-noise measurement, and tremendous computational power, are nearly within technological reach. Silicon as a technology platform has proven formi bable in establishing the micro-electornics revoltution, and it might do so again in the quantum technology revolution. Silicon has has taken photonics by storm, with its promise of scalable manufacture, integration, and compatibility with CMOS microelectronics. These same properties, and a few others, motivate its use for large-scale quantum optics as well. In this article we provide context to the development of quantum optics in silicon. We review the development of the various components which constitute integrated quantum photonic systems, and we identify the challenges which must be faced and their potential solutions for silicon quantum photonics to make quantum technology a reality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا