ﻻ يوجد ملخص باللغة العربية
In this letter, we propose a method for period estimation in light curves from periodic variable stars using correntropy. Light curves are astronomical time series of stellar brightness over time, and are characterized as being noisy and unevenly sampled. We propose to use slotted time lags in order to estimate correntropy directly from irregularly sampled time series. A new information theoretic metric is proposed for discriminating among the peaks of the correntropy spectral density. The slotted correntropy method outperformed slotted correlation, string length, VarTools (Lomb-Scargle periodogram and Analysis of Variance), and SigSpec applications on a set of light curves drawn from the MACHO survey.
We present here a provenance management system adapted to astronomical projects needs. We collected use cases from various astronomy projects and defined a data model in the ecosystem developed by the IVOA (International Virtual Observatory Alliance)
The exact period determination of a multi-periodic variable star based on its luminosity time series data is believed a task requiring skill and experience. Thus the majority of available time series analysis techniques require human intervention to
This letter analyzes a class of information freshness metrics for large IoT systems in which terminals employ slotted ALOHA to access a common channel. Considering a Gilbert- Elliot channel model, information freshness is evaluated through a penalty
Let ${X_n}_{n=0}^{infty}$ be a stationary real-valued time series with unknown distribution. Our goal is to estimate the conditional expectation of $X_{n+1}$ based on the observations $X_i$, $0le ile n$ in a strongly consistent way. Bailey and Ryabko
The forward estimation problem for stationary and ergodic time series ${X_n}_{n=0}^{infty}$ taking values from a finite alphabet ${cal X}$ is to estimate the probability that $X_{n+1}=x$ based on the observations $X_i$, $0le ile n$ without prior know