ﻻ يوجد ملخص باللغة العربية
Is the accelerating expansion of the Universe true, inferred through observations of distant supernovae, and is the implied existence of an enormous amount of anti-gravitational dark energy material driving the accelerating expansion of the universe also true? To be physically useful these propositions must be falsifiable; that is, subject to observational tests that could render them false, and both fail when viscous, diffusive, astro-biological and turbulence effects are included in the interpretation of observations. A more plausible explanation of negative stresses producing the big bang is turbulence at Planck temperatures. Inflation results from gluon viscous stresses at the strong force transition. Anti-gravitational (dark energy) turbulence stresses are powerful but only temporary. No permanent dark energy is needed. At the plasma-gas transition, viscous stresses cause fragmentation of plasma proto-galaxies into dark matter clumps of primordial gas planets, each of which falsifies dark-energy cold-dark-matter cosmologies. Clumps of these planets form all stars, and explain the alleged accelerating expansion of the universe as a systematic dimming error of Supernovae Ia by light scattered in the hot turbulent atmospheres of evaporated planets surrounding central white dwarf stars.
It is well known that the leptogenesis mechanism offers an attractive possibility to explain the baryon asymmetry of the universe. Its particular robustness however comes with one major difficulty: it will be very hard if not impossible to test exper
Recently a full-shape analysis of large-scale structure (LSS) data was employed to provide new constraints on a class of Early Dark Energy (EDE) models. In this note, we derive similar constraints on New Early Dark Energy (NEDE) using the publicly av
We showed how the shape of cosmic voids can be used to distinguish between different models of dark energy using galaxy positions.
We revisit the impact of early dark energy (EDE) on galaxy clustering using BOSS galaxy power spectra, analyzed using the effective field theory (EFT) of large-scale structure (LSS), and anisotropies of the cosmic microwave background (CMB) from Plan
We explain dark energy with equipartition theorem in string landscape.