ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce stable recursive subhomogeneous algebras (SRSHAs), which is analogous to recursive subhomogeneous algebras (RSHAs) introduced by N. C. Phillips in the studies of free minimal integer actions on compact metric spaces. The difference between the stable version and the none stable version is that the irreducible representations of SRSHAs are infinite dimensional, but the irreducible representations of the RSHAs are finite dimensional. While RSHAs play an important role in the study of free minimal integer actions on compact metric spaces, SRSHAs play an analogous role in the study of free minimal actions by the group of the real numbers on compact metric spaces. In this paper, we show that simple inductive limits of SRSHAs with no dimension growth in which the connecting maps are injective and non-vanishing have topological stable rank one.
We consider unital simple inductive limits of generalized dimension drop C*-algebras They are so-called ASH-algebras and include all unital simple AH-algebras and all dimension drop $C^*$-algebras. Suppose that $A$ is one of these C*-algebras. We sho
Let $(X, Gamma)$ be a free minimal dynamical system, where $X$ is a compact separable Hausdorff space and $Gamma$ is a discrete amenable group. It is shown that, if $(X, Gamma)$ has a version of Rokhlin property (uniform Rokhlin property) and if $mat
We define a strong Morita-type equivalence $sim _{sigma Delta }$ for operator algebras. We prove that $Asim _{sigma Delta }B$ if and only if $A$ and $B$ are stably isomorphic. We also define a relation $subset _{sigma Delta }$ for operator algebras.
We consider the properties weak cancellation, K_1-surjectivity, good index theory, and K_1-injectivity for the class of extremally rich C*-algebras, and for the smaller class of isometrically rich C*-algebras. We establish all four properties for iso
We introduce a Morita type equivalence: two operator algebras $A$ and $B$ are called strongly $Delta $-equivalent if they have completely isometric representations $alpha $ and $beta $ respectively and there exists a ternary ring of operators $M$ suc