ﻻ يوجد ملخص باللغة العربية
We have discovered two compact sources of shocked H2 2.12-micron emission coincident with Mol 160 (IRAS 23385+6053), a massive star-forming core thought to be a precursor to an ultracompact HII region. The 2.12-micron sources lie within 2 (0.05 pc) of a millimeter-wavelength continuum peak where the column density is >= 10e24 cm$^{-2}$. We estimate that the ratio of molecular hydrogen luminosity to bolometric luminosity is > 0.2%, indicating a high ratio of mechanical to radiant luminosity. CS J=2-1 and HCO$^+$ J=1-0 observations with CARMA indicate that the protostellar molecular core has a peculiar velocity of ~ 2 km s$^{-1}$ with respect to its parent molecular cloud. We also observed 95 GHz CH3OH J=8$-7 Class I maser emission from several locations within the core. Comparison with previous observations of 44-GHz CH3OH maser emission shows the maser sources have a high mean ratio of 95-GHz to 44-GHz intensity. Our observations strengthen the case that Mol 160 (IRAS 23385+6053) is a rapidly accreting massive protostellar system in a very early phase of its evolution.
We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H II region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30
We present a spectroscopic follow-up of photometrically-selected young stellar object (YSO) candidates in the Central Molecular Zone of the Galactic center. Our goal is to quantify the contamination of this YSO sample by reddened giant stars with cir
We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one
The Carina Nebula represents one of the largest and most active star forming regions known in our Galaxy with numerous very massive stars.Our recently obtained Herschel PACS & SPIRE far-infrared maps cover the full area (about 8.7 deg^2) of the Carin
K-band spectra of young stellar candidates in four southern hemisphere clusters have been obtained with the near-infrared spectrograph GNIRS in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompa