ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous emission from large quantum dots in nanostructures: exciton-photon interaction beyond the dipole approximation

104   0   0.0 ( 0 )
 نشر من قبل S{\\o}ren Stobbe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive a rigorous theory of the interaction between photons and spatially extended excitons confined in quantum dots in inhomogeneous photonic materials. We show that, beyond the dipole approximation, the radiative decay rate is proportional to a non-local interaction function, which describes the interaction between light and spatially extended excitons. In this regime, light and matter degrees of freedom cannot be separated and a complex interplay between the nanostructured optical environment and the exciton envelope function emerges. We illustrate this by specific examples and derive a series of important analytical relations, which are useful for applying the formalism to practical problems. In the dipole limit, the decay rate is proportional to the projected local density of optical states and we obtain the strong and weak confinement regimes as special cases.



قيم البحث

اقرأ أيضاً

We study a two-level quantum system embedded in a dispersive environment and coupled with the electromagnetic field. We expand the theory of light-matter interactions to include the spatial extension of the system, taken into account through its wave functions. This is a development beyond the point-dipole approximation. This ingredient enables us to overcome the divergence problem related to the Green tensor propagator. Hence, we can reformulate the expressions for the spontaneous emission rate and the Lamb shift. In particular, the inclusion of the spatial structure of the atomic system clarifies the role of the asymmetry of atomic states with respect to spatial inversion in these quantities.
With gate-defined electrostatic traps fabricated on a double quantum well we are able to realize an optically active and voltage-tunable quantum dot confining individual, long-living, spatially indirect excitons. We study the transition from multi ex citons down to a single indirect exciton. In the few exciton regime, we observe discrete emission lines reflecting the interplay of dipolar interexcitonic repulsion and spatial quantization. The quantum dot states are tunable by gate voltage and employing a magnetic field results in a diamagnetic shift. The scheme introduces a new gate-defined platform for creating and controlling optically active quantum dots and opens the route to lithographically defined coupled quantum dot arrays with tunable in-plane coupling and voltage-controlled optical properties of single charge and spin states.
We have used the variable stripe technique and pump-probe spectroscopy to investigate both gain and the dynamics of amplified spontaneous emission from CdSe quantum dot structures. We have found modal gain coefficients of 75 and 32 1/cm for asymmetri c and symmetric waveguide structures, respectively. Amplified spontaneous emission decay times of 150 and 300 ps and carrier capture times of 15 and 40 ps were measured for the structures with high and low material gains respectively. The difference in the capture times are related to the fact that for the symmetric waveguide, carriers diffuse into the active region from the uppermost ZnMgSSe cladding layer, yielding a longer rise time for the pump-probe signals for this sample.
217 - S. Zhao , J. Lavie , L. Rondin 2018
In the field of condensed matter, graphene plays a central role as an emerging material for nanoelectronics. Nevertheless, graphene is a semimetal, which constitutes a severe limitation for some future applications. Therefore, a lot of efforts are be ing made to develop semiconductor materials whose structure is compatible with the graphene lattice. In this perspective, little pieces of graphene represent a promising alternative. In particular, their electronic, optical and spin properties can be in principle controlled by designing their size, shape and edges. As an example, graphene nanoribbons with zigzag edges have localized spin polarized states. Likewise, singlet-triplet energy splitting can be chosen by designing the structure of graphene quantum dots. Moreover, bottom-up molecular synthesis put these potentialities at our fingertips. Here, we report on a single emitter study that directly addresses the intrinsic properties of a single graphene quantum dot. In particular, we show that graphene quantum dots emit single photons at room temperature with a high purity, a high brightness and a good photostability. These results pave the way to the development of new quantum systems based on these nanoscale pieces of graphene.
Polariton emission from optical cavities integrated with various luminophores has been extensively studied recently due to the wide variety of possible applications in photonics, particularly promising in terms of fabrication of low-threshold sources of coherent emission. Tuneable microcavities allow extensive investigation of the photophysical properties of matter placed inside the cavity by deterministically changing the coupling strength and controllable switching from weak to strong and ultra-strong coupling regimes. Here we demonstrate room temperature strong coupling of exciton transitions in CdSe/ZnS/CdS/ZnS colloidal quantum dots with the optical modes of a tuneable low-mode-volume microcavity. Strong coupling is evidenced by a large Rabi splitting of the photoluminescence spectra depending on the detuning of the microcavity. A coupling strength of 154 meV has been achieved. High quantum yields, excellent photostability, and scalability of fabrication of QDs paves the way to practical applications of coupled systems based on colloidal QDs in photonics, optoelectronics, and sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا