ﻻ يوجد ملخص باللغة العربية
We consider antiPoisson superalgebra realized on the smooth Grassmann-valued functions of the form xi f_0(x)+f_1(x), where f_0 has compact support on R, and with the parity opposite to that of the Grassmann superalgebra realized on these functions. The deformations with even and odd deformation parameters of this superalgebra are found.
We consider antibracket superalgebras realized on the smooth Grassmann-valued functions with compact supports in n-dimensional space and with the grading inverse to Grassmanian parity. The deformations with even and odd deformation parameters of these superalgebras are presented for arbitrary n.
We consider antiPoisson superalgebras realized on the smooth Grassmann-valued functions with compact supports in R^n and with the grading inverse to Grassmanian parity. The deformations of these superalgebras and their central extensions are found.
Deformation quantization conventionally is described in terms of multidifferential operators. Jet manifold technique is well-known provide the adequate formulation of theory of differential operators. We extended this formulation to the multidifferen
In this paper, we show that it is always possible to deform a differential equation $partial_x Psi(x) = L(x) Psi(x)$ with $L(x) in mathfrak{sl}_2(mathbb{C})(x)$ by introducing a small formal parameter $hbar$ in such a way that it satisfies the Topolo
Two one-parameter families of twists providing kappa-Minkowski * -product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra p