ﻻ يوجد ملخص باللغة العربية
While the Low Frequency Array (LOFAR) is still in its commissioning phase, early science results are starting to emerge. Two nearby galaxies, M51 and NGC4631, have been observed as part of the Magnetism Key Science Projects (MKSP) effort to increase our understanding of the nature of weak magnetic fields in galaxies. LOFAR and the complexity of its calibration as well as the aims and goals of the MKSP are presented.
According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxie
Giant radio galaxies (GRGs) are physically large radio sources that extend well beyond their host galaxy environment. Their polarization properties are affected by the poorly constrained magnetic field that permeates the intergalactic medium on Mpc s
Radio synchrotron emission is a powerful tool to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 mu G) and in centr
At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF phased arrays that are about to be installed on the Westerb
We present a method for determining directions of magnetic field vectors in a spiral galaxy using two synchrotron polarization maps, an optical image, and a velocity field. The orientation of the transverse magnetic field is determined with a synchro