ترغب بنشر مسار تعليمي؟ اضغط هنا

Multimessenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos

118   0   0.0 ( 0 )
 نشر من قبل Imre Bartos
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the baseline multimessenger analysis method for the joint observations of gravitational waves (GW) and high-energy neutrinos (HEN), together with a detailed analysis of the expected science reach of the joint search. The analysis method combines data from GW and HEN detectors, and uses the blue-luminosity-weighted distribution of galaxies. We derive expected GW+HEN source rate upper limits for a wide range of source parameters covering several emission models. Using published sensitivities of externally triggered searches, we derive joint upper limit estimates both for the ongoing analysis with the initial LIGO-Virgo GW detectors with the partial IceCube detector (22 strings) HEN detector and for projected results to advanced LIGO-Virgo detectors with the completed IceCube (86 strings). We discuss the constraints these upper limits impose on some existing GW+HEN emission models.



قيم البحث

اقرأ أيضاً

144 - S. Ando , B. Baret 2012
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GW) and high-energy neutrinos (HEN). Both GWs and HENs may escape very dense media and travel unaffected over cosmological distances, carrying information from the innermost regions of the astrophysical engines. Such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: IceCube, ANTARES, VIRGO and LIGO. Given the complexity of the instruments, a successful joint analysis of this data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This review aims at providing an overview of both theoretical and experimental state-of-the-art and perspectives for such a GW+HEN multimessenger astronomy.
We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010 . These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCubes observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$,M$_odot$c$^2$ at $sim 150$,Hz with $sim 60$,ms duration, and high-energy neutrino emission of $10^{51}$,erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 times 10^{-2}$,Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.
LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of a stronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.
119 - V. Van Elewyck 2009
Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). A network of GW detectors such as LIGO and Virgo can determine the direction/time o f GW bursts while the IceCube and ANTARES neutrino telescopes can also provide accurate directional information for HEN events. Requiring the consistency between both, totally independent, detection channels shall enable new searches for cosmic events arriving from potential common sources, of which many extra-galactic objects.
In recent years, there have been significant advances in multi-messenger astronomy due to the discovery of the first, and so far only confirmed, gravitational wave event with a simultaneous electromagnetic (EM) counterpart, as well as improvements in numerical simulations, gravitational wave (GW) detectors, and transient astronomy. This has led to the exciting possibility of performing joint analyses of the GW and EM data, providing additional constraints on fundamental properties of the binary progenitor and merger remnant. Here, we present a new Bayesian framework that allows inference of these properties, while taking into account the systematic modeling uncertainties that arise when mapping from GW binary progenitor properties to photometric light curves. We extend the relative binning method presented in Zackay et al. (2018) to include extrinsic GW parameters for fast analysis of the GW signal. The focus of our EM framework is on light curves arising from r-process nucleosynthesis in the ejected material during and after merger, the so called kilonova, and particularly on black hole - neutron star systems. As a case study, we examine the recent detection of GW190425, where the primary object is consistent with being either a black hole (BH) or a neutron star (NS). We show quantitatively how improved mapping between binary progenitor and outflow properties, and/or an increase in EM data quantity and quality are required in order to break degeneracies in the fundamental source parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا