ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel Far-Infrared and Sub-millimeter Photometry for the KINGFISH Sample of Nearby Galaxies

432   0   0.0 ( 0 )
 نشر من قبل Daniel Dale
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New far-infrared and sub-millimeter photometry from the Herschel Space Observatory is presented for 61 nearby galaxies from the Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel (KINGFISH) sample. The spatially-integrated fluxes are largely consistent with expectations based on Spitzer far-infrared photometry and extrapolations to longer wavelengths using popular dust emission models. Dwarf irregular galaxies are notable exceptions, as already noted by other authors, as their 500um emission shows evidence for a sub-millimeter excess. In addition, the fraction of dust heating attributed to intense radiation fields associated with photo-dissociation regions is found to be (21+/-4)% larger when Herschel data are included in the analysis. Dust masses obtained from the dust emission models of Draine & Li are found to be on average nearly a factor of two higher than those based on single-temperature modified blackbodies, as single blackbody curves do not capture the full range of dust temperatures inherent to any galaxy. The discrepancy is largest for galaxies exhibiting the coolest far-infrared colors.



قيم البحث

اقرأ أيضاً

Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model-independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades. The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low. We find that the dust/stellar flux ratio varies with morphology and total IR luminosity. We also find that dust/stellar flux ratios are related to gas-phase metallicity, while the dust/stellar mass ratios are less so. The substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we show that early-types tend to have slightly warmer temperatures than spiral galaxies, which may be due to more intense interstellar radiation fields, or to different dust grain compositions. Finally, we show that early-types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing star formation and the radiation field from older stars.
The KINGFISH project (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) is an imaging and spectroscopic survey of 61 nearby (d < 30 Mpc) galaxies, chosen to cover a wide range of galaxy properties and local interstellar medium (IS M) environments found in the nearby Universe. Its broad goals are to characterize the ISM of present-day galaxies, the heating and cooling of their gaseous and dust components, and to better understand the physical processes linking star formation and the ISM. KINGFISH is a direct descendant of the Spitzer Infrared Nearby Galaxies Survey (SINGS), which produced complete Spitzer imaging and spectroscopic mapping and a comprehensive set of multi-wavelength ancillary observations for the sample. The Herschel imaging consists of complete maps for the galaxies at 70, 100, 160, 250, 350, and 500 microns. The spectal line imaging of the principal atomic ISM cooling lines ([OI]63um, [OIII]88um, [NII]122,205um, and [CII]158um) covers the subregions in the centers and disks that already have been mapped in the mid-infrared with Spitzer. The KINGFISH and SINGS multi-wavelength datasets combined provide panchromatic mapping of the galaxies sufficient to resolve individual star-forming regions, and tracing the important heating and cooling channels of the ISM, across a wide range of local extragalactic ISM environments. This paper summarizes the scientific strategy for KINGFISH, the properties of the galaxy sample, the observing strategy, and data processing and products. It also presents a combined Spitzer and Herschel image atlas for the KINGFISH galaxies, covering the wavelength range 3.6 -- 500 microns. All imaging and spectroscopy data products will be released to the Herschel user generated product archives.
We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel) and SINGS (Spitzer Infr ared Nearby Galaxies Survey) samples. The 34-band dataset presented here includes contributions from observational work carried out with a variety of facilities including GALEX, SDSS, PS, NOAO, 2MASS, WISE, Spitzer, Herschel, Planck, JCMT, and the VLA. Improvements of note include recalibrations of previously-published SINGS BVRcIc and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf/irregular galaxies. This 34-band photometric dataset for the combined KINGFISH$+$SINGS sample serves as an important multi-wavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.
We present a host morphological study of 1,265 far-infrared galaxies (FIRGs) and sub-millimeter galaxies (SMGs) in the Cosmic Evolution Survey field using the F160W and F814W images obtained by the Hubble Space Telescope. The FIRGs and the SMGs are s elected from the Herschel Multi-tiered Extragalactic Survey and the SCUBA-2 Cosmology Legacy Survey, respectively. Their precise locations are based on the interferometry data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array. The vast majority of these objects are at $0.1lesssim zlesssim 3$. While the SMGs do not constitute a subset of the FIRGs in our selection due to the signal-to-noise ratio thresholds, SMGs can be regarded as the population at the high-redshift tail of FIRGs. Most of our FIRGs/SMGs have total infrared luminosity ($L_{rm IR}$) in the regimes of luminous and ultra-luminous infrared galaxies (LIRGs, $L_{rm IR} = 10^{11-12}L_odot$; ULIRGs, $L_{rm IR}>10^{12}L_odot$). The hosts of the SMG ULIRGs, FIRG ULIRGs and FIRG LIRGs are of sufficient numbers to allow for detailed analysis, and they are only modestly different in their stellar masses. Their morphological types are predominantly disk galaxies (type D) and irregular/interacting systems (type Irr/Int). There is a morphological transition at $zapprox 1.25$ for the FIRG ULIRG hosts, above which the Irr/Int galaxies dominate and below which the D and the Irr/Int galaxies have nearly the same contributions. The SMG ULIRG hosts seem to experience a similar transition. This suggests a shift in the relative importance of galaxy mergers/interactions versus secular gas accretions in normal disk galaxies as the possible triggering mechanisms of ULIRGs. The FIRG LIRG hosts are predominantly D galaxies over $z=0.25-1.25$ where they are of sufficient statistics.
We present Herschel far-infrared (FIR) observations of two sub-mm bright quasars at high redshift: SDSS J1148+5251 (z=6.42) and BR 1202-0725 (z=4.69) obtained with the PACS instrument. Both objects are detected in the PACS photometric bands. The Hers chel measurements provide additional data points that constrain the FIR spectral energy distributions (SEDs) of both sources, and they emphasise a broad range of dust temperatures in these objects. For lambda_rest ~< 20mu, the two SEDs are very similar to the average SEDs of quasars at low redshift. In the FIR, however, both quasars show excess emission compared to low-z QSO templates, most likely from cold dust powered by vigorous star formation in the QSO host galaxies. For SDSS J1148+5251 we detect another object at 160mu with a distance of ~10 arcseconds from the QSO. Although no physical connection between the quasar and this object can be shown with the available data, it could potentially confuse low-resolution measurements, thus resulting in an overestimate of the FIR luminosity of the z=6.42 quasar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا