ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum liquid-crystal order in resonant atomic gases

102   0   0.0 ( 0 )
 نشر من قبل Leo Radzihovsky
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Leo Radzihovsky




اسأل ChatGPT حول البحث

I review recent studies that predict quantum liquid-crystalline orders in resonant atomic gases. As examples of such putative systems I will discuss an s-wave resonant imbalanced Fermi gas and a p-wave resonant Bose gas. In the former, the liquid-crystalline smectic, nematic and rich variety of other descendant states emerge from strongly quantum- and thermally- fluctuating Fulde-Ferrell and Larkin-Ovchinnikov states, driven by a competition between resonant pairing and Fermi-surface mismatch. In the latter, at intermediate detuning the p-wave resonant interaction generically drives Bose-condensation at a finite momentum, set by a competition between atomic kinetic energy and atom-molecule hybridization. Because of the underlying rotationally-invariant environment of the atomic gas trapped isotropically, the putative striped superfluid is a realization of a quantum superfluid smectic, that can melt into a variety of interesting phases, such as a quantum nematic. I will discuss the corresponding rich phase diagrams and transitions, as well the low-energy properties of the phases and fractional topological defects generic to striped superfluids and their fluctuation-driven descendants.



قيم البحث

اقرأ أيضاً

112 - Andre Eckardt 2016
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coheren t control of many-body systems. In particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of attention. Milestones include the observation of dynamic localization, the dynamic control of the quantum phase transition between a bosonic superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and topological band structures. This article reviews these recent experiments and their theoretical description. Moreover, fundamental properties of periodically driven many-body systems are discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous topological edge states, and the response to slow parameter variations.
Precise control of magnetic fields is a frequent challenge encountered in experiments with atomic quantum gases. Here we present a simple method for performing in-situ monitoring of magnetic fields that can readily be implemented in any quantum-gas a pparatus in which a dedicated field-stabilization approach is not possible. The method, which works by sampling several Rabi resonances between magnetically field sensitive internal states that are not otherwise used in a given experiment, can be integrated with standard measurement sequences at arbitrary fields. For a condensate of $^{87}$Rb atoms, we demonstrate the reconstruction of Gauss-level bias fields with an accuracy of tens of microgauss and with millisecond time resolution. We test the performance of the method using measurements of slow resonant Rabi oscillations on a magnetic-field sensitive transition, and give an example for its use in experiments with state-selective optical potentials.
We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momen tum state. This directly confirms Pauli blocking in momentum space. For the spin-balanced unitary Fermi gas, we observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.
We experimentally investigate the quantum criticality and Tomonaga-Luttinger liquid (TLL) behavior within one-dimensional (1D) ultracold atomic gases. Based on the measured density profiles at different temperatures, the universal scaling laws of the rmodynamic quantities are observed. The quantum critical regime and the relevant crossover temperatures are determined through the double-peak structure of the specific heat. In the TLL regime, we obtain the Luttinger parameter by probing sound propagation. Furthermore, a characteristic power-law behavior emerges in the measured momentum distributions of the 1D ultracold gas, confirming the existence of the TLL.
We present a complete recipe to extract the density-density correlations and the static structure factor of a two-dimensional (2D) atomic quantum gas from in situ imaging. Using images of non-interacting thermal gases, we characterize and remove the systematic contributions of imaging aberrations to the measured density-density correlations of atomic samples. We determine the static structure factor and report results on weakly interacting 2D Bose gases, as well as strongly interacting gases in a 2D optical lattice. In the strongly interacting regime, we observe a strong suppression of the static structure factor at long wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا