Jeans analysis of self-gravitating systems in f(R)-gravity


الملخص بالإنكليزية

Dynamics and collapse of collisionless self-gravitating systems is described by the coupled collisionless Boltzmann and Poisson equations derived from $f(R)$-gravity in the weak field approximation. Specifically, we describe a system at equilibrium by a time-independent distribution function $f_0(x,v)$ and two potentials $Phi_0(x)$ and $Psi_0(x)$ solutions of the modified Poisson and collisionless Boltzmann equations. Considering a small perturbation from the equilibrium and linearizing the field equations, it can be obtained a dispersion relation. A dispersion equation is achieved for neutral dust-particle systems where a generalized Jeans wave-number is obtained. This analysis gives rise to unstable modes not present in the standard Jeans analysis (derived assuming Newtonian gravity as weak filed limit of $f(R)=R$). In this perspective, we discuss several self-gravitating astrophysical systems whose dynamics could be fully addressed in the framework of $f(R)$-gravity.

تحميل البحث