ﻻ يوجد ملخص باللغة العربية
With a new detector setup and the high-resolution performance of the fragment separator FRS at GSI we discovered 57 new isotopes in the atomic number range of 60$leq Z leq 78$: uc{159-161}{Nb}, uc{160-163}{Pm}, uc{163-166}Sm, uc{167-168}{Eu}, uc{167-171}{Gd}, uc{169-171}{Tb}, uc{171-174}{Dy}, uc{173-176}{Ho}, uc{176-178}{Er}, uc{178-181}{Tm}, uc{183-185}{Yb}, uc{187-188}{Lu}, uc{191}{Hf}, uc{193-194}{Ta}, uc{196-197}{W}, uc{199-200}{Re}, uc{201-203}{Os}, uc{204-205}{Ir} and uc{206-209}{Pt}. The new isotopes have been unambiguously identified in reactions with a $^{238}$U beam impinging on a Be target at 1 GeV/u. The isotopic production cross-section for the new isotopes have been measured and compared with predictions of different model calculations. In general, the ABRABLA and COFRA models agree better than a factor of two with the new data, whereas the semiempirical EPAX model deviates much more. Projectile fragmentation is the dominant reaction creating the new isotopes, whereas fission contributes significantly only up to about the element holmium.
Production cross sections for neutron-rich nuclei from the fragmentation of a 82Se beam at 139 MeV/u were measured. The longitudinal momentum distributions of 122 neutron-rich isotopes of elements $11 le Z le 32$ were determined by varying the target
The use of argon as a detection and shielding medium for neutrino and dark matter experiments has made the precise knowledge of the cross section for neutron capture on argon an important design and operational parameter. Since previous measurements
Storage-ring mass spectrometry was applied to neutron-rich $^{197}$Au projectile fragments. Masses of $^{181,183}$Lu, $^{185,186}$Hf, $^{187,188}$Ta, $^{191}$W, and $^{192,193}$Re nuclei were measured for the first time. The uncertainty of previously
The 235U(n,f) cross section was measured in a wide energy range at n_TOF relative to 6Li(n,t) and 10B(n,alpha), with high resolution and in a wide energy range, with a setup based on a stack of six samples and six silicon detectors placed in the neut
Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$gamma$) cross section uncertainty. Method: The $^{243}$Am