ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly maximal representations of surface groups

173   0   0.0 ( 0 )
 نشر من قبل Tobias Hartnick
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and study a new class of representations of surface groups into Lie groups of Hermitian type, called weakly maximal representations. They are defined in terms of invariants in bounded cohomology and extend considerably the scope of maximal representations. We prove that weakly maximal representations are discrete and injective and describe the structure of the Zariski closure of the image. An interesting feature of these representations is that they admit an elementary topological characterization in terms of bi-invariant orderings. In particular if the target group is Hermitian of tube type, the ordering can be described in terms of the causal structure on the Shilov boundary.



قيم البحث

اقرأ أيضاً

160 - Peter B. Gothen 2012
These are the lecture notes from my course in the January 2011 School on Moduli Spaces at the Newton Institute. I give an introduction to Higgs bundles and their application to the study of character varieties for surface group representations.
In this paper, we study the geometric and dynamical properties of maximal representations of surface groups into Hermitian Lie groups of rank 2. Combining tools from Higgs bundle theory, the theory of Anosov representations, and pseudo-Riemannian geo metry, we obtain various results of interest. We prove that these representations are holonomies of certain geometric structures, recovering results of Guichard and Wienhard. We also prove that their length spectrum is uniformly bigger than that of a suitably chosen Fuchsian representation, extending a previous work of the second author. Finally, we show that these representations preserve a unique minimal surface in the symmetric space, extending a theorem of Labourie for Hitchin representations in rank 2.
We prove a generalization of a conjecture of C. Marion on generation properties of finite groups of Lie type, by considering geometric properties of an appropriate representation variety and associated tangent spaces.
We show that for a fixed k, Gromov random groups with any positive density have no non-trivial degree-k representations over any field, a.a.s. This is especially interesting in light of the results of Agol, Ollivier and Wise that when the density is less than 1/6 such groups have a faithful linear representation over the rationals, a.a.s.
89 - Gareth A. Jones 2018
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma ximal nonparabolic subgroups, that is, maximal with respect to containing no parabolic elements. We strengthen and extend this result by giving a simple construction using planar maps to show that for all integers $pge 3$, $qge 2$ the triangle group $Gamma=Delta(p,q,infty)cong C_p*C_q$ has uncountably many conjugacy classes of nonparabolic maximal subgroups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by constructing uncountably many conjugacy classes of such subgroups of $Gamma$ which do not arise from Neumanns original method. These maximal subgroups are all generated by elliptic elements, of finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free maximal subgroups of the Hecke groups $C_p*C_2$ for odd $pge 3$. Finally, an adaptation of work of Conder yields uncountably many conjugacy classes of maximal subgroups of $Delta(2,3,r)$ for all $rge 7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا