ﻻ يوجد ملخص باللغة العربية
In this paper, we show that all fat Hoffman graphs with smallest eigenvalue at least -1-tau, where tau is the golden ratio, can be described by a finite set of fat (-1-tau)-irreducible Hoffman graphs. In the terminology of Woo and Neumaier, we mean that every fat Hoffman graph with smallest eigenvalue at least -1-tau is an H-line graph, where H is the set of isomorphism classes of maximal fat (-1-tau)-irreducible Hoffman graphs. It turns out that there are 37 fat (-1-tau)-irreducible Hoffman graphs, up to isomorphism.
We investigate fat Hoffman graphs with smallest eigenvalue at least -3, using their special graphs. We show that the special graph S(H) of an indecomposable fat Hoffman graph H is represented by the standard lattice or an irreducible root lattice. Mo
In this paper, we give a combinatorial characterization of the special graphs of fat Hoffman graphs containing $mathfrak{K}_{1,2}$ with smallest eigenvalue greater than -3, where $mathfrak{K}_{1,2}$ is the Hoffman graph having one slim vertex and two fat vertices.
Koolen et al. showed that if a graph with smallest eigenvalue at least $-3$ has large minimal valency, then it is $2$-integrable. In this paper, we will focus on the sesqui-regular graphs with smallest eigenvalue at least $-3$ and study their integrability.
Let $q_{min}(G)$ stand for the smallest eigenvalue of the signless Laplacian of a graph $G$ of order $n.$ This paper gives some results on the following extremal problem: How large can $q_minleft( Gright) $ be if $G$ is a graph of order $n,$ with n
Let $lambda_{2}(G)$ be the second smallest normalized Laplacian eigenvalue of a graph $G$. In this paper, we determine all unicyclic graphs of order $ngeq21$ with $lambda_{2}(G)geq 1-frac{sqrt{6}}{3}$. Moreover, the unicyclic graphs with $lambda_{2}(G)=1-frac{sqrt{6}}{3}$ are also determined.