ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon-mediated coupling between quantum dots through an off-resonant microcavity

141   0   0.0 ( 0 )
 نشر من قبل Arka Majumdar
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental results showing phonon-mediated coupling between two quantum dots embedded inside a photonic crystal microcavity. With only one of the dots being spectrally close to the cavity, we observe both frequency up-conversion and down-conversion of the pump light via a $sim1.2$ THz phonon. We demonstrate this process for both weak and strong regimes of dot-cavity coupling, and provide a simple theoretical model explaining our observations.



قيم البحث

اقرأ أيضاً

Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t o a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
We study the mutual interaction between two identical quantum dots coupled to the normal modes of two-site photonic crystal molecules in a planar waveguide geometry, i.e. photonic crystal dimers. We find that the radiative coupling between the two qu antum emitters is maximized when they are in resonance with either the bonding or the antibonding modes of the coupled cavity system. Moreover, we find that such effective interdot coupling is sizable, in the meV range, and almost independent from the cavities distance, as long as a normal mode splitting exceeding the radiative linewidth can be established (strong cavity-cavity coupling condition). In realistic and high quality factor photonic crystal cavity devices, such distance can largely exceed the emission wavelength, which is promising for long distance entanglement generation between two qubits in an integrated nanophotonic platform. We show that these results are robust against position disorder of the two quantum emitters within their respective cavities.
313 - Alex Zazunov 2005
Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. u sing a carbon nanotube contacted by an STM tip [Nature {bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A half-shuttle mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the floating level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
The Jaynes-Cummings model, describing the interaction between a single two-level system and a photonic mode, has been used to describe a large variety of systems, ranging from cavity quantum electrodynamics, trapped ions, to superconducting qubits co upled to resonators. Recently there has been renewed interest in studying the quantum strong-coupling (QSC) regime, where states with photon number greater than one are excited. This regime has been recently achieved in semiconductor nanostructures, where a quantum dot is trapped in a planar microcavity. Here we study the quantum strong-coupling regime by calculating its photoluminescence (PL) properties under a pulsed excitation. We discuss the changes in the PL as the QSC regime is reached, which transitions between a peak around the cavity resonance to a doublet. We particularly examine the variations of the PL in the time domain, under regimes of short and long pulse times relative to the microcavity decay time.
We theoretically investigate transport signatures of quantum interference in highly symmetric double quantum dots in a parallel geometry and demonstrate that extremely weak symmetry-breaking effects can have a dramatic influence on the current. Our c alculations are based on a master equation where quantum interference enters as non-diagonal elements of the density matrix of the double quantum dots. We also show that many results have a physically intuitive meaning when recasting our equations as Bloch-like equations for a pseudo spin associated with the dot occupation. In the perfectly symmetric configuration with equal tunnel couplings and orbital energies of both dots, there is no unique stationary state density matrix. Interestingly, however, adding arbitrarily small symmetry-breaking terms to the tunnel couplings or orbital energies stabilizes a stationary state either with or without quantum interference, depending on the competition between these two perturbations. The different solutions can correspond to very different current levels. Therefore, if the orbital energies and/or tunnel couplings are controlled by, e.g., electrostatic gating, the double quantum dot can act as an exceptionally sensitive electric switch.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا