ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields and star formation as seen in edge-on galaxies

171   0   0.0 ( 0 )
 نشر من قبل Gabriele Breuer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marita Krause




اسأل ChatGPT حول البحث

Radio continuum and polarization observations of several nearby galaxies allowed to determine their vertical scaleheights, magnetic field strengths and large-scale magnetic field patterns. They all show a similar large-scale magnetic field pattern, which is parallel to the galactic disk along the midplane and X-shaped further away from the disk plane, indepenent of their Hubble type or star formation in the disk or nuclear region. We conclude that - though a high star formation rate (SFR) in the disk increases the total magnetic field strength in the disk and the halo - the SFR does not significantly change the global field configuration nor influence the global scale heights of the radio emission. The observed similar scale heights indicate that star formation regulates the galactic wind velocities. The galactic wind itself may be essential for an effective dynamo action.



قيم البحث

اقرأ أيضاً

We present Herschel (PACS and SPIRE) far-infrared (FIR) photometry of a complete sample of z>1 3CR sources, from the Herschel GT project The Herschel Legacy of distant radio-loud AGN (PI: Barthel). Combining these with existing Spitzer photometric da ta, we perform an infrared (IR) spectral energy distribution (SED) analysis of these landmark objects in extragalactic research to study the star formation in the hosts of some of the brightest active galactic nuclei (AGN) known at any epoch. Accounting for the contribution from an AGN-powered warm dust component to the IR SED, about 40% of our objects undergo episodes of prodigious, ULIRG-strength star formation, with rates of hundreds of solar masses per year, coeval with the growth of the central supermassive black hole. Median SEDs imply that the quasar and radio galaxy hosts have similar FIR properties, in agreement with the orientation-based unification for radio-loud AGN. The star-forming properties of the AGN hosts are similar to those of the general population of equally massive non-AGN galaxies at comparable redshifts, thus there is no strong evidence of universal quenching of star formation (negative feedback) within this sample. Massive galaxies at high redshift may be forming stars prodigiously, regardless of whether their supermassive black holes are accreting or not.
We measure the gas disc thicknesses of the edge-on galaxy NGC 4013 and the less edge-on galaxies (NGC 4157 and 5907) using CO (CARMA/OVRO) and/or HI (EVLA) observations. We also estimate the scale heights of stars and/or the star formation rate (SFR) for our sample of five galaxies using Spitzer IR data (3.6 $mu$m and 24 $mu$m). We derive the average volume densities of the gas and the SFR using the measured scale heights along with radial surface density profiles. Using the volume density that is more physically relevant to the SFR than the surface density, we investigate the existence of a volumetric star formation law (SFL), how the volumetric SFL is different from the surface-density SFL, and how the gas pressure regulates the SFR based on our galaxy sample. We find that the volumetric and surface SFLs in terms of the total gas have significantly different slopes, while the volumetric and surface SFLs in terms of the molecular gas do not show any noticeable difference. The volumetric SFL for the total gas has a flatter power-law slope of 1.26 with a smaller scatter of 0.19 dex compared to the slope (2.05) and the scatter (0.25 dex) of the surface SFL. The molecular gas SFLs have similar slopes of 0.78 (volume density) and 0.77 (surface density) with the same rms scatter. We show that the interstellar gas pressure is strongly correlated with the SFR but find no significant difference between the correlations based on the volume and surface densities.
226 - Marita Krause 2009
The main observational results from radio continuum and polarization observations about the magnetic field strength and large-scale pattern for face-on and edge-on spiral galaxies are summarized and compared within our sample of galaxies of different morphological types, inclinations, and star formation rates (SFR). We found that galaxies with low SFR have higher thermal fractions/smaller synchrotron fractions than those with normal or high SFR. Adopting an equipartition model, we conclude that the nonthermal radio emission and the emph{total magnetic field} strength grow nonlinearly with SFR, while the regular magnetic field strength does not seem to depend on SFR. We also studied the magnetic field structure and disk thicknesses in highly inclined (edge-on) galaxies. We found in four galaxies that - despite their different radio appearance - the vertical scale heights for both, the thin and thick disk/halo, are about equal (0.3/1.8 kpc at 4.75 GHz), independently of their different SFR. This implies that all these galaxies host a galactic wind, in which the bulk velocity of the cosmic rays (CR) is determined by the total field strength within the galactic disk. The galaxies in our sample also show a similar large-scale magnetic field configuration, parallel to the midplane and X-shaped further away from the disk plane, independent of Hubble type and SFR in the disk. Hence we conclude that also the large-scale magnetic field pattern does not depend on the amount of SFR.
136 - Aritra Basu , Subhashis Roy 2014
We studied the total magnetic field strength in normal star-forming galaxies estimated using energy equipartition assumption. Using the well known radio--far infrared correlation we demonstrate that the equipartition assumption is valid in galaxies a t sub-kpc scales. We find that the magnetic field strength is strongly correlated with the surface star formation rate in the galaxies NGC 6946 and NGC 5236. Further, we compare the magnetic field energy density to the total (thermal + turbulent) energy densities of gas (neutral + ionized) to identify regions of efficient field amplification in the galaxy NGC 6946. We find that in regions of efficient star formation, the magnetic field energy density is comparable to that of the total energy density of various interstellar medium components and systematically dominates in regions of low star formation efficiency.
182 - Junhao Liu 2020
We present 1.3 mm ALMA dust polarization observations at a resolution of $sim$0.02 pc of three massive molecular clumps, MM1, MM4, and MM9, in the infrared dark cloud G28.34+0.06. With the sensitive and high-resolution continuum data, MM1 is resolved into a cluster of condensations. The magnetic field structure in each clump is revealed by the polarized emission. We found a trend of decreasing polarized emission fraction with increasing Stokes $I$ intensities in MM1 and MM4. Using the angular dispersion function method (a modified Davis-Chandrasekhar-Fermi method), the plane-of-sky magnetic field strength in two massive dense cores, MM1-Core1 and MM4-Core4, are estimated to be $sim$1.6 mG and $sim$0.32 mG, respectively. textbf{The ordered magnetic energy is found to be smaller than the turbulent energy in the two cores, while the total magnetic energy is found to be comparable to the turbulent energy.} The total virial parameters in MM1-Core1 and MM4-Core4 are calculated to be $sim$0.76 and $sim$0.37, respectively, suggesting that massive star formation does not start in equilibrium. Using the polarization-intensity gradient-local gravity method, we found that the local gravity is closely aligned with intensity gradient in the three clumps, and the magnetic field tends to be aligned with the local gravity in MM1 and MM4 except for regions near the emission peak, which suggests that the gravity plays a dominant role in regulating the gas collapse. Half of the outflows in MM4 and MM9 are found to be aligned within 10$^{circ}$ of the condensation-scale ($<$0.05 pc) magnetic field, indicating that the magnetic field could play an important role from condensation to disk scale in the early stage of massive star formation. We also found that the fragmentation in MM1-Core1 cannot be solely explained by thermal Jeans fragmentation or turbulent Jeans fragmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا