ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman Evidence for Superconducting Gap and Spin-Phonon Coupling in Superconductor Ca(Fe0.95Co0.05)2As2

120   0   0.0 ( 0 )
 نشر من قبل Pradeep Khatri Mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic light scattering studies on single crystal of electron-doped Ca(Fe0.95Co0.05)2As2 superconductor, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at TSM ~ 140 K and superconducting transition temperature Tc ~ 23 K, reveal evidence for superconductivity-induced phonon renormalization; in particular the phonon mode near 260 cm-1 shows hardening below Tc, signaling its coupling with the superconducting gap. All the three Raman active phonon modes show anomalous temperature dependence between room temperature and Tc i.e phonon frequency decreases with lowering temperature. Further, frequency of one of the modes shows a sudden change in temperature dependence at TSM. Using first-principles density functional theory-based calculations, we show that the low temperature phase (Tc < T < TSM) exhibits short-ranged stripe anti-ferromagnetic ordering, and estimate the spin-phonon couplings that are responsible for these phonon anomalies.



قيم البحث

اقرأ أيضاً

54 - S. Ostertun 1999
We investigate the electronic background as well as the O2-O3 mode at 330 cm^-1 of highly doped YbBa2Cu3O7-delta in B1g symmetry. Above the critical temperature Tc the spectra consist of an almost constant electronic background and superimposed phono nic excitations. Below Tc the superconducting gap opens and the electronic background redistributes exhibiting a 2Delta peak at 320 cm^-1. We use a model that allows us to separate the background from the phonon. In this model the phonon intensity is assigned to the coupling of the phonon to inter- and intraband electronic excitations. For excitation energies between 1.96 eV and 2.71 eV the electronic background exhibits hardly any resonance. Accordingly, the intraband contribution to the phonon intensity is not affected. In contrast, the interband contribution vanishes below Tc at 1.96 eV while it remains almost unaffected at 2.71 eV.
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)2As2 in a wide spectral range of 120-5200 cm-1 from 5K to 300K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at Tsm ~ 160K. The mode frequ encies of two first-order Raman modes B1g and Eg, both involving displacement of Fe atoms, show sharp increase below Tsm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below Tsm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400-1200 cm-1 are attributed to the electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be ~ 25 meV which increases as temperature decreases below Tsm. A broad Raman band observed at ~ 3200 cm-1 is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature Tc ~ 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A1g phonon mode near 150 cm-1 associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below Tc. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2) at zero temperature is estimated to be ~ 20 meV i.e the ratio is ~ 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430 cm-1 associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below Tc suggesting strong coupling between crystal field excitation and the superconducting quasi-particles. Our observations of two high frequency modes (S9 and S10) evidence the non-degenerate nature of Fe2+ dxz/yz orbitals suggesting the electronic nematicity in these systems.
We propose a microscopic theory of interaction of long wave molecular phonons with electrons in fullerides in the presence of disorder. Phonon relaxation rate and frequency renormalization are discussed. Finite electronic bandwidth reduces phonon rel axation rate at $q=0$. Electron-phonon coupling constants with molecular modes in fullerides are estimated. The results are in good agreement with photoemission experiments.
The title compound is investigated by specific heat measurements in the normal and superconducting state supplemented by upper critical field transport, susceptibility and magnetization measurements. From a detailed analysis including also full poten tial electronic structure calculations for the Fermi surface sheets, Fermi velocities and partial densities of states the presence of both strong electron-phonon interactions and considerable pair-breaking has been revealed. The specific heat and the upper critical field data can be described to first approximation by an effective single band model close to the clean limit derived from a strongly coupled predominant hole subsystem with small Fermi velocities. However, in order to account also for Hall-conductivity and thermopower data in the literature, an effective general two-band model is proposed. This two-band model provides a flexible enough frame to describe consistently all available data within a scenario of phonon mediated s-wave superconductivity somewhat suppressed by sizeable electron-paramagnon or electron-electron Coulomb interaction. For quantitative details the relevance of soft phonons and of a van Hove type singularity in the electronic density of states near the Fermi energy is suggested.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا