ترغب بنشر مسار تعليمي؟ اضغط هنا

The importance of nebular emission for SED modeling of distant star-forming galaxies

396   0   0.0 ( 0 )
 نشر من قبل Daniel Schaerer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Schaerer




اسأل ChatGPT حول البحث

We highlight and discuss the importance of accounting for nebular emission in the SEDs of high redshift galaxies, as lines and continuum emission can contribute significantly or subtly to broad-band photometry. Physical parameters such as the galaxy age, mass, star-formation rate, dust attenuation and others inferred from SED fits can be affected to different extent by the treatment of nebular emission. We analyse a large sample of Lyman break galaxies from z~3-6, and show some main results illustrating e.g. the importance of nebular emission for determinations of the mass-SFR relation, attenuation and age. We suggest that a fairly large scatter in such relations could be intrinsic. We find that the majority of objects (~60-70%) is better fit with SEDs accounting for nebular emission; the remaining galaxies are found to show relatively weak or no emission lines. Our modeling, and supporting empirical evidence, suggests the existence of two categories of galaxies, starbursts and post-starbursts (lower SFR and older galaxies) among the LBG population, and relatively short star-formation timescales.



قيم البحث

اقرأ أيضاً

Galaxy surveys targeting emission lines are characterising the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model sag with the photoionisation code mapp. We characterise the interstellar medium (ISM) of galaxies by relating the ionisation parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed ha, oii, oiii luminosity functions, and the the BPT diagram for local star-forming galaxies. The average ionisation parameter is found to increase towards low star-formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star-formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below $M_{rm halo} lesssim 10^{12} {[rm h^{-1} M_{odot}]}$. Finally, we exploit our modelling technique to predict galaxy number counts up to $zsim 10$ by targeting far-infrared (FIR) emission lines detectable with submillimetre facilities
To investigate the ingredients, which allow star-forming galaxies to present Lyalpha line in emission, we studied the kinematics and gas phase metallicity (Z) of the interstellar medium. We used multi-object NIR spectroscopy with Magellan/MMIRS to st udy nebular emission from z=2-3 star-forming galaxies discovered in 3 MUSYC fields. We detected emission lines from four active galactic nuclei and 13 high-z star-forming galaxies, including Halpha lines down to a flux of 4.E-17 erg/sec/cm^2. This yielded 7 new redshifts. The most common emission line detected is [OIII]5007, which is sensitive to Z. We were able to measure Z for 2 galaxies and to set upper(lower) limits for another 2(2). The Z values are consistent with 0.3<Z/Zsun<1.2. Comparing the Lyalpha central wavelength with the systemic redshift, we find Delta_v(Lyalpha-[OIII])=70-270 km/sec. High-redshift star-forming galaxies, Lyalpha emitting (LAE) galaxies, and Halpha emitters appear to be located in the low mass, high star-formation rate (SFR) region of the SFR versus stellar mass diagram, confirming that they are experiencing burst episodes of star formation, which are building up their stellar mass. Their Zs are consistent with the relation found for z<2.2 galaxies in the Z versus stellar mass plane. The measured Delta_v(Lyalpha-[OIII]) values imply that outflows of material, driven by star formation, could be present in the z=2-3 LAEs of our sample. Comparing with the literature, we note that galaxies with lower Z than ours are also characterized by similar Delta_v(Lyalpha-[OIII]) velocity offsets. Strong [OIII] is detected in many Lyalpha emitters. Therefore, we propose the Lyalpha/[OIII] flux ratio as a tool for the study of high-z galaxies; while influenced by Z, ionization, and Lyalpha radiative transfer in the ISM, it may be possible to calibrate this ratio to primarily trace one of these effects.
Spectral population synthesis (PS) is a fundamental tool in extragalactic research that aims to decipher the assembly history of galaxies from their SED. However, until recently all PS codes were restricted to purely stellar fits, neglecting the esse ntial contribution of nebular emission (NE). With the advent of FADO, the now possible self-consistent modelling of stellar and NE opens new routes to the exploration of galaxy SFHs. The main goal of this study is to quantitatively explore the accuracy to which FADO can recover physical and evolutionary properties of galaxies and compare its output with that from purely stellar PS codes. With this in mind, FADO and STARLIGHT were applied to synthetic SEDs that track the spectral evolution of stars and gas in extinction-free mock galaxies that form their stellar mass ($M_star$) according to different parametric SFHs. Spectral fits were computed for two different set-ups that approximate the spectral range of SDSS and CALIFA data. Our analysis indicates that FADO can recover the key physical and evolutionary properties of galaxies, such as $M_star$ and mass- and light-weighted mean age and metallicity, with an accuracy better than 0.2 dex. This is the case even in phases of strongly elevated sSFR and thus with considerable NE contamination. As for STARLIGHT, our analysis documents a moderately good agreement with theoretical values only for evolutionary phases for which NE drops to low levels. Indeed, fits with STARLIGHT during phases of high sSFR severely overestimate both $M_star$ and the mass-weighted stellar age, whereas strongly underestimate the light-weighted age and metallicity. The insights from this study suggest that the neglect of nebular continuum emission in STARLIGHT and similar purely stellar PS codes could systematically impact $M_star$ and SFH estimates for star-forming galaxies.
Star forming galaxies exhibit a variety of physical conditions, from quiescent normal spirals to the most powerful dusty starbursts. In order to study these complex systems, we need a suitable tool to analyze the information coming from observations at all wavelengths. We present a new spectro-photometric model which considers in a consistent way starlight as reprocessed by gas and dust. We discuss preliminary results to interpret some observed properties of VLIRGs.
153 - R. Kipper , E. Tempel , A. Tamm 2012
Evolution of galaxies is one of the most actual topics in astrophysics. Among the most important factors determining the evolution are two galactic components which are difficult or even impossible to detect optically: the gaseous disks and the dark matter halo. We use deep Hubble Space Telescope images to construct a two-component (bulge + disk) model for stellar matter distribution of galaxies. Properties of the galactic components are derived using a three-dimensional galaxy modeling software, which also estimates disk thickness and inclination angle. We add a gas disk and a dark matter halo and use hydrodynamical equations to calculate gas rotation and dispersion profiles in the resultant gravitational potential. We compare the kinematic profiles with the Team Keck Redshift Survey observations. In this pilot study, two galaxies are analyzed deriving parameters for their stellar components; both galaxies are found to be disk-dominated. Using the kinematical model, the gas mass and stellar mass ratio in the disk are estimated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا