ترغب بنشر مسار تعليمي؟ اضغط هنا

The First Galaxies: Assembly with Black Hole Feedback

200   0   0.0 ( 0 )
 نشر من قبل Myoungwon Jeon
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.



قيم البحث

اقرأ أيضاً

We investigate the formation of a galaxy reaching a virial mass of $~ 10^8$ solar mass at $z=10$ by carrying out a zoomed radiation-hydrodynamical cosmological simulation. This simulation traces Population~III (Pop~III) star formation, characterized by a modestly top-heavy initial mass function (IMF), and considers stellar feedback such as photoionization heating from Pop III and Population~II (Pop~II) stars, mechanical and chemical feedback from supernovae (SNe), and X-ray feedback from accreting black holes (BHs) and high-mass X-ray binaries (HMXBs). We self-consistently impose a transition in star formation mode from top-heavy Pop III to low-mass Pop~II, and find that the star formation rate in the computational box is dominated by Pop~III until $z=13$, and by Pop~II thereafter. The simulated galaxy experiences bursty star formation, with a substantially reduced gas content due to photoionization heating from Pop~III and Pop~II stars, together with SN feedback. All the gas within the simulated galaxy is metal-enriched above $10^{-5}$ solar, such that there are no remaining pockets of primordial gas. The simulated galaxy has an estimated observed flux of $~10^{-3} nJy$, which is too low to be detected by the James Webb Space Telescope (JWST) without strong lensing amplification. We also show that our simulated galaxy is similar in terms of stellar mass to Segue 2, the least luminous dwarf known in the Local Group.
Star formation in the universes most massive galaxies proceeds furiously early in time but then nearly ceases. Plenty of hot gas remains available but does not cool and condense into star-forming clouds. Active galactic nuclei (AGN) release enough en ergy to inhibit cooling of the hot gas, but energetic arguments alone do not explain why quenching of star formation is most effective in high-mass galaxies. In fact, optical observations show that quenching is more closely related to a galaxys central stellar velocity dispersion ($sigma_v$) than to any other characteristic. Here, we show that high $sigma_v$ is critical to quenching because a deep central potential well maximizes the efficacy of AGN feedback. In order to remain quenched, a galaxy must continually sweep out the gas ejected from its aging stars. Supernova heating can accomplish this task as long as the AGN sufficiently reduces the gas pressure of the surrounding circumgalactic medium (CGM). We find that CGM pressure acts as the control knob on a valve that regulates AGN feedback and suggest that feedback power self-adjusts so that it suffices to lift the CGM out of the galaxys potential well. Supernova heating then drives a galactic outflow that remains homogeneous if $sigma_v gtrsim 240 , {rm km , s^{-1}}$. AGN feedback can effectively quench galaxies with a comparable velocity dispersion, but feedback in galaxies with a much lower velocity dispersion tends to result in convective circulation and accumulation of multiphase gas within the galaxy.
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh aped by the energy injection from accreting supermassive black holes (SMBHs). However, it is unclear how exactly the physics of this feedback process affects galaxy formation and evolution. In particular, a major challenge is unraveling how the energy released near the SMBHs is distributed over nine orders of magnitude in distance throughout galaxies and their immediate environments. The best place to study the impact of SMBH feedback is in the hot atmospheres of massive galaxies, groups, and galaxy clusters, which host the most massive black holes in the Universe, and where we can directly image the impact of black holes on their surroundings. We identify critical questions and potential measurements that will likely transform our understanding of the physics of SMBH feedback and how it shapes galaxies, through detailed measurements of (i) the thermodynamic and velocity fluctuations in the intracluster medium (ICM) as well as (ii) the composition of the bubbles inflated by SMBHs in the centers of galaxy clusters, and their influence on the cluster gas and galaxy growth, using the next generation of high spectral and spatial resolution X-ray and microwave telescopes.
Dark matter may consist, at least partially, of primordial black holes formed during the radiation-dominated era. The radiation produced by accretion onto primordial black holes leaves characteristic signatures on the properties of the medium at high redshift, before and after Hydrogen recombination. Therefore, reliable modelling of accretion onto these objects is required to obtain robust constraints on their abundance. We investigate the effect of mechanical feedback, i.e. the impact of outflows (winds and/or jets) on the medium, on primordial black hole accretion, and thereby on the associated radiation. Using analytical and numerical calculations, we study for the first time whether outflows can reduce the accretion rate of primordial black holes with masses similar to those detected by the LIGO-Virgo collaboration. Despite the complexity of the accretion rate evolution, mechanical feedback is able to significantly reduce the primordial black hole accretion rate, at least by an order of magnitude, when outflows are aligned with the motion of the compact object. If the outflow is perpendicular to the direction of motion, the effect is less important but still non-negligible. Outflows from primordial black holes, even rather weak ones, can significantly decrease the accretion rate, effectively weakening abundance constraints on these objects. Our results motivate further numerical simulations with a more realistic setup, which would yield more precise quantitative predictions.
We investigate the effects of massive black hole growth on the structural evolution of dwarf galaxies within the Romulus25 cosmological hydrodynamical simulation. We study a sample of 228 central, isolated dwarf galaxies with stellar masses $M_{star} < 10^{10} M_odot$ and a central BH. We find that the local $M_{BH} - M_{star}$ relation exhibits a high degree of scatter below $M_{star} < 10^{10} M_odot$, which we use to classify BHs as overmassive or undermassive relative to their host $M_{star}$. Overmassive BHs grow through a mixture of BH mergers and relatively high average accretion rates, while undermassive BHs grow slowly through accretion. We find that isolated dwarf galaxies that host overmassive BHs also follow different evolutionary tracks relative to their undermassive BH counterparts, building up their stars and dark matter earlier and experiencing star formation suppression starting around $z=2$. By $z=0.05$, overmassive BH hosts above $M_{star} > 10^{9} M_odot$ are more likely to exhibit lower central stellar mass density, lower HI gas content, and lower star formation rates than their undermassive BH counterparts. Our results suggest that overmassive BHs in isolated galaxies above $M_{star} > 10^{9} M_odot$ are capable of driving feedback, in many cases suppressing and even quenching star formation by late times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا