ﻻ يوجد ملخص باللغة العربية
We have carried out a detailed modeling of the dust Spectral Energy Distribution (SED) of the nearby, starbursting dwarf galaxy NGC 4214. A key point of our modeling is that we distinguish the emission from (i) HII regions and their associated photodissociation regions (PDRs) and (ii) diffuse dust. For both components we apply templates from the literature calculated with a realistic geometry and including radiation transfer. The large amount of existing data from the ultraviolet (UV) to the radio allows the direct measurement of most of the input parameters of the models. We achieve a good fit for the total dust SED of NGC 4214. In the present contribution we describe the available data, the data reduction and the determination of the model parameters, whereas a description of the general outline of our work is presented in the contribution of Lisenfeld et al. in this volume.
We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {it Spitzer}, Hersche
NGC 4151 is among the most well-studied Seyfert galaxies that does not suffer from strong obscuration along the observers line-of-sight. This allows to probe the central active galactic nucleus (AGN) engine with photometry, spectroscopy, reverberatio
We present results from model fitting to the Spectral Energy Distribution (SED) of a homogeneous sample of Seyfert II galaxies drawn from the $12mu$m Galaxy Sample. Imaging and nuclear flux measurements are presented in an accompanying paper (Videla
Although infrared (IR) overall dust emission from clusters of galaxies has been statistically detected using data from the Infrared Astronomical Satellite (IRAS), it has not been possible to sample the spectral energy distribution (SED) of this emiss
During galaxy-galaxy interactions, massive gas clouds can be injected into the intergalactic medium which in turn become gravitationally bound, collapse and form stars, star clusters or even dwarf galaxies. The objects resulting from this process are