ترغب بنشر مسار تعليمي؟ اضغط هنا

AGATA - Advanced Gamma Tracking Array

206   0   0.0 ( 0 )
 نشر من قبل Johan Nyberg
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.



قيم البحث

اقرأ أيضاً

243 - J. Ljungvall 2020
The performance of the Advanced GAmma Tracking Array (AGATA) at GANIL is discussed, on the basis of the analysis of source and in-beam data taken with up to 30 segmented crystals. Data processing is described in detail. The performance of individual detectors are shown. The efficiency of the individual detectors as well as the efficiency after $gamma$-ray tracking are discussed. Recent developments of $gamma$-ray tracking are also presented. The experimentally achieved peak-to-total is compared with simulations showing the impact of back-scattered $gamma$ rays on the peak-to-total in a $gamma$-ray tracking array. An estimate of the achieved position resolution using the Doppler broadening of in-beam data is also given. Angular correlations from source measurements are shown together with different methods to take into account the effects of $gamma$-ray tracking on the normalization of the angular correlations.
The MUGAST-AGATA-VAMOS set-up at GANIL combines the MUGAST highly-segmented silicon array with the state-of-the-art AGATA array and the large acceptance VAMOS spectrometer. The mechanical and electronics integration copes with the constraints of maxi mum efficiency for each device, in particular {gamma}-ray transparency for the silicon array. This complete set-up offers a unique opportunity to perform exclusive measurements of direct reactions with the radioactive beams from the SPIRAL1 facility. The performance of the set-up is described through its commissioning and two examples of transfer reactions measured during the campaign. High accuracy spectroscopy of the nuclei of interest, including cross-sections and angular distributions, is achieved through the triple-coincidence measurement. In addition, the correction from Doppler effect of the {gamma}-ray energies is improved by the detection of the light particles and the use of two-body kinematics and a full rejection of the background contributions is obtained through the identification of heavy residues. Moreover, the system can handle high intensity beams (up to 108 pps). The particle identification based on the measurement of the time-of-flight between MUGAST and VAMOS and the reconstruction of the trajectories is investigated.
UCGretina, a GEANT4 simulation of the GRETINA gamma-ray tracking array of highly-segmented high-purity germanium detectors is described. We have developed a model of the array, in particular of the Quad Module and the capsules, that gives good agreem ent between simulated and measured photopeak efficiencies over a broad range of gamma-ray energies and reproduces the shape of the measured Compton continuum. Both of these features are needed in order to accurately extract gamma-ray yields from spectra collected in in-beam gamma-ray spectroscopy measurements with beams traveling at $v/c gtrsim 0.3$ at the National Superconducting Cyclotron Laboratory and the Facility for Rare Isotope Beams. In the process of developing the model, we determined that millimeter-scale layers of passive germanium surrounding the active volumes of the simulated crystals must be included in order to reproduce measured photopeak efficiencies. We adopted a simple model of effective passive layers and developed heuristic methods of determining passive-layer thicknesses by comparison of simulations and measurements for a single crystal and for the full array. Prospects for future development of the model are discussed.
The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. At the same time the next generation of high resolution gamma-ray spectrometers, based on gamma-ray trac king, for studying the structure of these exotic nuclei are being developed. One of the main differences in tracking of $gamma$ rays versus charged particles is that the gamma rays do not deposit their energy continuously in the detector, but in a few discrete steps. Also, in the field of nuclear spectroscopy, the location of the source is mostly well known while the exact interaction position in the detector is the unknown quantity. This makes the challenges of gamma-ray tracking in germanium somewhat different compared to vertexing in silicon detectors. In these proceedings we present the methods for determining the 3D interaction positions in the detector and how these are used to reconstruct the gamma-ray tracks in the AGATA detector array. We also present preliminary simulation results of a proposed in-beam method to measure the interaction position resolution in the germanium detectors.
The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the De monstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا